15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lifetime Dependent Variation of Stress Hormone Metabolites in Feces of Two Laboratory Mouse Strains

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-invasive measurement of stress hormone metabolites in feces has become routine practice for the evaluation of distress and pain in animal experiments. Since metabolism and excretion of glucocorticoids may be variable, awareness and adequate consideration of influencing factors are essential for accurate monitoring of adrenocortical activity. Reference values are usually provided by baselines compiled prior to the experiment and by age matched controls. The comparison of stress hormone levels between animals of different ages or between studies looking at hormone levels at the beginning and at the end of a long term study might be biased by age-related effects. In this study we analyzed fecal corticosterone metabolites (FCM) during the lifetime of untreated female mice of the strains C57BL/6NCrl and Crl:CD1. For this purpose feces for each individual mouse were collected every two months over a period of 24 hours, at intervals of four hours, until the age of 26 months. Results of the study revealed that age of the animals had a significant impact on the level and circadian rhythm of stress hormone metabolites. Furthermore, long-term observation of mice revealed a strain specific excretion profile of FCM influenced by strong seasonal variability.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates.

          The vertebrate stress response helps animals respond to environmental dangers such as predators or storms. An important component of the stress response is glucocorticoid (GC) release, resulting from activation of the hypothalamic-pituitary-adrenal axis. After release, GCs induce a variety of behavioral and physiological changes that presumably help the animal respond appropriately to the situation. Consequently, GC secretion is often considered an obligatory response to stressful situations. Evidence now indicates, however, that free-living species from many taxa can seasonally modulate GC release. In other words, the magnitudes of both unstressed and stressed GC concentrations change depending upon the time of year. This review examines the growing evidence that GC concentrations in free-living reptiles, amphibians, and birds, but not mammals, are commonly elevated during the breeding season. This evidence is then used to test three hypotheses with different focuses on GC's energetic or behavioral effects, as well as on GC's role in preparing the animal for subsequent stressors. These hypotheses attempt to place annual GC rhythms into a physiological or behavioral context. Integrating seasonal differences in GC concentrations with either different physiological states or different life history stages provides clues to a new understanding of how GCs actually help in survival during stress. Consequently, understanding seasonal modulation of GC release has far-reaching importance for both the physiology of the stress response and the short-term survival of individual animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Light activates the adrenal gland: timing of gene expression and glucocorticoid release.

            Light is a powerful synchronizer of the circadian rhythms, and bright light therapy is known to improve metabolic and hormonal status of circadian rhythm sleep disorders, although its mechanism is poorly understood. In the present study, we revealed that light induces gene expression in the adrenal gland via the suprachiasmatic nucleus (SCN)-sympathetic nervous system. Moreover, this gene expression accompanies the surge of plasma and brain corticosterone levels without accompanying activation of the hypothalamo-adenohypophysial axis. The abolishment after SCN lesioning, and the day-night difference of light-induced adrenal gene expression and corticosterone release, clearly indicate that this phenomenon is closely linked to the circadian clock. The magnitude of corticostereone response is dose dependently correlated with the light intensity. The light-induced clock-dependent secretion of glucocorticoids adjusts cellular metabolisms to the new light-on environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice.

              Non-invasive techniques to monitor stress hormones in small animals like mice offer several advantages and are highly demanded in laboratory as well as in field research. Since knowledge about the species-specific metabolism and excretion of glucocorticoids is essential to develop such a technique, we conducted radiometabolism studies in mice (Mus musculus f. domesticus, strain C57BL/6J). Each mouse was injected intraperitoneally with 740 kBq of 3H-labelled corticosterone and all voided urine and fecal samples were collected for five days. In a first experiment 16 animals (eight of each sex) received the injection at 9 a.m., while eight mice (four of each sex) were injected at 9 p.m. in a second experiment. In both experiments radioactive metabolites were recovered predominantly in the feces, although males excreted significantly higher proportions via the feces (about 73%) than females (about 53%). Peak radioactivity in the urine was detected within about 2h after injection, while in the feces peak concentrations were observed later (depending on the time of injection: about 10h postinjection in experiment 1 and about 4h postinjection in experiment 2, thus proving an effect of the time of day). The number and relative abundance of fecal [3H]corticosterone metabolites was determined by high performance liquid chromatography (HPLC). The HPLC separations revealed that corticosterone was extensively metabolized mainly to more polar substances. Regarding the types of metabolites formed, significant differences were found between males and females, but not between the experiments. Additionally, the immunoreactivity of these metabolites was assessed by screening the HPLC fractions with four enzyme immunoassays (EIA). However, only a newly established EIA for 5alpha-pregnane-3beta,11beta,21-triol-20-one (measuring corticosterone metabolites with a 5alpha-3beta,11beta-diol structure) detected several peaks of radioactive metabolites with high intensity in both sexes, while the other EIAs showed only minor immunoreactivity. Thus, our study for the first time provides substantial information about metabolism and excretion of corticosterone in urine and feces of mice and is the first demonstrating a significant impact of the animals' sex and the time of day. Based on these data it should be possible to monitor adrenocortical activity non-invasively in this species by measuring fecal corticosterone metabolites with the newly developed EIA. Since mice are extensively used in research world-wide, this could open new perspectives in various fields from ecology to behavioral endocrinology. Copyright 2003 Elsevier Science (USA)
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                18 August 2015
                2015
                : 10
                : 8
                : e0136112
                Affiliations
                [1 ]Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
                [2 ]IFA-Tulln, University of Natural Resources and Life Sciences, Tulln, Austria
                [3 ]Unit of Physiology, Pathophysiology and Experimental Endocrinology, University of Veterinary Medicine Vienna, Vienna, Austria
                [4 ]Bioinformatics and Biostatistics Platform, University of Veterinary Medicine Vienna, Vienna, Austria
                [5 ]Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Vienna, Austria
                University of Lübeck, GERMANY
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TK TR. Performed the experiments: TK RP. Analyzed the data: TK RP AT TR. Contributed reagents/materials/analysis tools: TK RP TR. Wrote the paper: TR.

                Article
                PONE-D-15-15970
                10.1371/journal.pone.0136112
                4540567
                26284365
                01bd61c7-bfa0-40e3-93c9-6bfb8be5c544
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 15 April 2015
                : 29 July 2015
                Page count
                Figures: 5, Tables: 1, Pages: 11
                Funding
                The authors have no support or funding to report.
                Categories
                Research Article
                Custom metadata
                Data are held in a public repository, URL: http://www.vetmeduni.ac.at/de/labortierkunde/forschung/data/.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article