14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Development and evaluation of multiplex real-time RT-PCR assays for seasonal, pandemic A/H1pdm09 and avian A/H5 influenza viruses detection

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since the pandemic influenza A (H1N1) 2009 ((H1N1)pdm09) virus spread all over the world, the (H1N1)pdm09 virus has been circulating with seasonal influenza viruses. We developed rapid and sensitive one-step multiplex real-time RT-PCR assays (rRT-PCR) for simultaneous detection of influenza viruses currently circulating in humans, and the avian A/H5 virus. The detection limit of each assay was 4.8 to 1 copies per reaction and no cross-reactivity with other major respiratory pathogens was found. Analytical positive predictive value (PPV), negative predictive value (NPV) sensitivity and specificity were 100%, 94.1%, 93.7% and 100%, respectively. Clinical evaluation revealed that 1,976 (16.5%) of 11,963 throat swabs from patients with respiratory symptoms were confirmed as 1,651 (83.6%) A/H1pdm09, 308 (15.6%) A/H3 and 17 (0.8%) B virus during the 2010–2011 influenza season. Collectively, the multiplex rRT-PCR assays described here provide a practical tool for reliable implementation of influenza surveillance and diagnosis.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Understanding the symptoms of the common cold and influenza

          Ron Eccles (2005)
          Summary The common cold and influenza (flu) are the most common syndromes of infection in human beings. These diseases are diagnosed on symptomatology, and treatments are mainly symptomatic, yet our understanding of the mechanisms that generate the familiar symptoms is poor compared with the amount of knowledge available on the molecular biology of the viruses involved. New knowledge of the effects of cytokines in human beings now helps to explain some of the symptoms of colds and flu that were previously in the realm of folklore rather than medicine—eg, fever, anorexia, malaise, chilliness, headache, and muscle aches and pains. The mechanisms of symptoms of sore throat, rhinorrhoea, sneezing, nasal congestion, cough, watery eyes, and sinus pain are discussed, since these mechanisms are not dealt with in any detail in standard medical textbooks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Design and performance of the CDC real-time reverse transcriptase PCR swine flu panel for detection of 2009 A (H1N1) pandemic influenza virus.

            Swine influenza viruses (SIV) have been shown to sporadically infect humans and are infrequently identified by the Influenza Division of the Centers for Disease Control and Prevention (CDC) after being received as unsubtypeable influenza A virus samples. Real-time reverse transcriptase PCR (rRT-PCR) procedures for detection and characterization of North American lineage (N. Am) SIV were developed and implemented at CDC for rapid identification of specimens from cases of suspected infections with SIV. These procedures were utilized in April 2009 for detection of human cases of 2009 A (H1N1) pandemic (pdm) influenza virus infection. Based on genetic sequence data derived from the first two viruses investigated, the previously developed rRT-PCR procedures were optimized to create the CDC rRT-PCR Swine Flu Panel for detection of the 2009 A (H1N1) pdm influenza virus. The analytical sensitivity of the CDC rRT-PCR Swine Flu Panel was shown to be 5 copies of RNA per reaction and 10(-1.3 - -0.7) 50% infectious doses (ID(50)) per reaction for cultured viruses. Cross-reactivity was not observed when testing human clinical specimens or cultured viruses that were positive for human seasonal A (H1N1, H3N2) and B influenza viruses. The CDC rRT-PCR Swine Flu Panel was distributed to public health laboratories in the United States and internationally from April 2009 until June 2010. The CDC rRT-PCR Swine Flu Panel served as an effective tool for timely and specific detection of 2009 A (H1N1) pdm influenza viruses and facilitated subsequent public health response implementation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Characterization of highly pathogenic H5N1 avian influenza A viruses isolated from South Korea.

              An unprecedented outbreak of H5N1 highly pathogenic avian influenza (HPAI) has been reported for poultry in eight different Asian countries, including South Korea, since December 2003. A phylogenetic analysis of the eight viral genes showed that the H5N1 poultry isolates from South Korea were of avian origin and contained the hemagglutinin and neuraminidase genes of the A/goose/Guangdong/1/96 (Gs/Gd) lineage. The current H5N1 strains in Asia, including the Korean isolates, share a gene constellation similar to that of the Penfold Park, Hong Kong, isolates from late 2002 and contain some molecular markers that seem to have been fixed in the Gs/Gd lineage virus since 2001. However, despite genetic similarities among recent H5N1 isolates, the topology of the phylogenetic tree clearly differentiates the Korean isolates from the Vietnamese and Thai isolates which have been reported to infect humans. A representative Korean isolate was inoculated into mice, with no mortality and no virus being isolated from the brain, although high titers of virus were observed in the lungs. The same isolate, however, caused systemic infections in chickens and quail and killed all of the birds within 2 and 4 days of intranasal inoculation, respectively. This isolate also replicated in multiple organs and tissues of ducks and caused some mortality. However, lower virus titers were observed in all corresponding tissues of ducks than in chicken and quail tissues, and the histological lesions were restricted to the respiratory tract. This study characterizes the molecular and biological properties of the H5N1 HPAI viruses from South Korea and emphasizes the need for comparative analyses of the H5N1 isolates from different countries to help elucidate the risk of a human pandemic from the strains of H5N1 HPAI currently circulating in Asia.
                Bookmark

                Author and article information

                Contributors
                +82-43-719-8190 , +82-43-719-8219 , ckang@nih.go.kr
                Journal
                J Microbiol
                J. Microbiol
                Journal of Microbiology (Seoul, Korea)
                The Microbiological Society of Korea (Heidelberg )
                1225-8873
                1976-3794
                27 April 2013
                2013
                : 51
                : 2
                : 252-257
                Affiliations
                GRID grid.418967.5, ISNI 0000000417638617, Division of Influenza Virus, Center for Infectious Disease, Korea National Institute of Health, , Korea Center for Disease Control and Prevention, ; Osong, 363-951 Republic of Korea
                Article
                2452
                10.1007/s12275-013-2452-y
                7091309
                23625229
                01cf5dd6-bb45-4592-966c-f182c6c19d5a
                © The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2013

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 29 August 2012
                : 2 January 2013
                Categories
                Virology
                Custom metadata
                © The Microbiological Society of Korea and Springer-Verlag Berlin Heidelberg 2013

                influenza,real-time rt-pcr,surveillance,diagnosis
                influenza, real-time rt-pcr, surveillance, diagnosis

                Comments

                Comment on this article