20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Procoagulant in vitro effects of clinical cellular therapeutics in a severely injured trauma population

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Clinical trials in trauma populations are exploring the use of clinical cellular therapeutics (CCTs) like human mesenchymal stromal cells (MSC) and mononuclear cells (MNC). Recent studies demonstrate a procoagulant effect of these CCTs related to their expression of tissue factor (TF). We sought to examine this relationship in blood from severely injured trauma patients and identify methods to reverse this procoagulant effect. Human MSCs from bone marrow, adipose, and amniotic tissues and freshly isolated bone marrow MNC samples were tested. TF expression and phenotype were quantified using flow cytometry. CCTs were mixed individually with trauma patients' whole blood, assayed with thromboelastography (TEG), and compared with healthy subjects mixed with the same cell sources. Heparin was added to samples at increasing concentrations until TEG parameters normalized. Clotting time or R time in TEG decreased relative to the TF expression of the CCT treatment in a logarithmic fashion for trauma patients and healthy subjects. Nonlinear regression curves were significantly different with healthy subjects demonstrating greater relative decreases in TEG clotting time. In vitro coadministration of heparin normalized the procoagulant effect and required dose escalation based on TF expression. TF expression in human MSC and MNC has a procoagulant effect in blood from trauma patients and healthy subjects. The procoagulant effect is lower in trauma patients possibly because their clotting time is already accelerated. The procoagulant effect due to MSC/MNC TF expression could be useful in the bleeding trauma patient; however, it may emerge as a safety release criterion due to thrombotic risk. The TF procoagulant effect is reversible with heparin.

          Abstract

          Clinical cellular therapeutic (CCT) procoagulant effects in trauma and healthy subjects. Error bars represent a 95% confidence interval. CCTs have a greater procoagulant effect in healthy subjects from a tissue factor load of 250 to 1700. Trauma patients are hypercoaguable at baseline and have less physiological capacity for an additional procoagulant response.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical trials in head injury.

          Traumatic brain injury (TBI) remains a major public health problem globally. In the United States the incidence of closed head injuries admitted to hospitals is conservatively estimated to be 200 per 100,000 population, and the incidence of penetrating head injury is estimated to be 12 per 100,000, the highest of any developed country in the world. This yields an approximate number of 500,000 new cases each year, a sizeable proportion of which demonstrate significant long-term disabilities. Unfortunately, there is a paucity of proven therapies for this disease. For a variety of reasons, clinical trials for this condition have been difficult to design and perform. Despite promising pre-clinical data, most of the trials that have been performed in recent years have failed to demonstrate any significant improvement in outcomes. The reasons for these failures have not always been apparent and any insights gained were not always shared. It was therefore feared that we were running the risk of repeating our mistakes. Recognizing the importance of TBI, the National Institute of Neurological Disorders and Stroke (NINDS) sponsored a workshop that brought together experts from clinical, research, and pharmaceutical backgrounds. This workshop proved to be very informative and yielded many insights into previous and future TBI trials. This paper is an attempt to summarize the key points made at the workshop. It is hoped that these lessons will enhance the planning and design of future efforts in this important field of research.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Bone Marrow Derived Mesenchymal Stem Cells Inhibit Inflammation and Preserve Vascular Endothelial Integrity in the Lungs after Hemorrhagic Shock

            Hemorrhagic shock (HS) and trauma is currently the leading cause of death in young adults worldwide. Morbidity and mortality after HS and trauma is often the result of multi-organ failure such as acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), conditions with few therapeutic options. Bone marrow derived mesenchymal stem cells (MSCs) are a multipotent stem cell population that has shown therapeutic promise in numerous pre-clinical and clinical models of disease. In this paper, in vitro studies with pulmonary endothelial cells (PECs) reveal that conditioned media (CM) from MSCs and MSC-PEC co-cultures inhibits PEC permeability by preserving adherens junctions (VE-cadherin and β-catenin). Leukocyte adhesion and adhesion molecule expression (VCAM-1 and ICAM-1) are inhibited in PECs treated with CM from MSC-PEC co-cultures. Further support for the modulatory effects of MSCs on pulmonary endothelial function and inflammation is demonstrated in our in vivo studies on HS in the rat. In a rat “fixed volume” model of mild HS, we show that MSCs administered IV potently inhibit systemic levels of inflammatory cytokines and chemokines in the serum of treated animals. In vivo MSCs also inhibit pulmonary endothelial permeability and lung edema with concurrent preservation of the vascular endothelial barrier proteins: VE-cadherin, Claudin-1, and Occludin-1. Leukocyte infiltrates (CD68 and MPO positive cells) are also decreased in lungs with MSC treatment. Taken together, these data suggest that MSCs, acting directly and through soluble factors, are potent stabilizers of the vascular endothelium and inflammation. These data are the first to demonstrate the therapeutic potential of MSCs in HS and have implications for the potential use of MSCs as a cellular therapy in HS-induced lung injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Treatment of Severe Adult Traumatic Brain Injury Using Bone Marrow Mononuclear Cells.

              Preclinical studies using bone marrow derived cells to treat traumatic brain injury have demonstrated efficacy in terms of blood-brain barrier preservation, neurogenesis, and functional outcomes. Phase 1 clinical trials using bone marrow mononuclear cells infused intravenously in children with severe traumatic brain injury demonstrated safety and potentially a central nervous system structural preservation treatment effect. This study sought to confirm the safety, logistic feasibility, and potential treatment effect size of structural preservation/inflammatory biomarker mitigation in adults to guide Phase 2 clinical trial design. Adults with severe traumatic brain injury (Glasgow Coma Scale 5-8) and without signs of irreversible brain injury were evaluated for entry into the trial. A dose escalation format was performed in 25 patients: 5 controls, followed 5 patients in each dosing cohort (6, 9, 12 ×10(6) cells/kg body weight), then 5 more controls. Bone marrow harvest, cell processing to isolate the mononuclear fraction, and re-infusion occurred within 48 hours after injury. Patients were monitored for harvest-related hemodynamic changes, infusional toxicity, and adverse events. Outcome measures included magnetic resonance imaging-based measurements of supratentorial and corpus callosal volumes as well as diffusion tensor imaging-based measurements of fractional anisotropy and mean diffusivity of the corpus callosum and the corticospinal tract at the level of the brainstem at 1 month and 6 months postinjury. Functional and neurocognitive outcomes were measured and correlated with imaging data. Inflammatory cytokine arrays were measured in the plasma pretreatment, posttreatment, and at 1 and 6 month follow-up. There were no serious adverse events. There was a mild pulmonary toxicity of the highest dose that was not clinically significant. Despite the treatment group having greater injury severity, there was structural preservation of critical regions of interest that correlated with functional outcomes. Key inflammatory cytokines were downregulated. Treatment of severe, adult traumatic brain injury using an intravenously delivered autologous bone marrow mononuclear cell infusion is safe and logistically feasible. There appears to be a treatment signal as evidenced by central nervous system structural preservation, consistent with previous pediatric trial data. Inflammatory biomarkers are downregulated after cell infusion. Stem Cells 2016 Video Highlight: https://youtu.be/UiCCPIe-IaQ Stem Cells 2017;35:1065-1079.
                Bookmark

                Author and article information

                Contributors
                mitchell.j.george@uth.tmc.edu
                Journal
                Stem Cells Transl Med
                Stem Cells Transl Med
                10.1002/(ISSN)2157-6580
                SCT3
                Stem Cells Translational Medicine
                John Wiley & Sons, Inc. (Hoboken, USA )
                2157-6564
                2157-6580
                06 January 2020
                April 2020
                : 9
                : 4 ( doiID: 10.1002/sct3.v9.4 )
                : 491-498
                Affiliations
                [ 1 ] Department of Surgery McGovern Medical School at The University of Texas Health Science Center Houston Texas
                [ 2 ] Department of Pediatric Surgery McGovern Medical School at The University of Texas Health Science Center Houston Texas
                [ 3 ] U.S. Army Institute of Surgical Research JBSA‐FT Sam Houston San Antonio Texas
                Author notes
                [*] [* ] Correspondence

                Mitchell J. George, MD, Department of Surgery, McGovern Medical School at The University of Texas Health Science Center, 6431 Fannin Street, MSB 5.004, Houston, Texas 77030.

                Email: mitchell.j.george@ 123456uth.tmc.edu

                Author information
                https://orcid.org/0000-0003-1668-821X
                https://orcid.org/0000-0001-8032-3755
                Article
                SCT312656
                10.1002/sctm.19-0206
                7103617
                31903737
                01dbc40a-c865-480a-a7be-45d4bc262045
                © 2020 The Authors. stem cells translational medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press

                This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 08 July 2019
                : 04 December 2019
                Page count
                Figures: 3, Tables: 3, Pages: 8, Words: 5946
                Funding
                Funded by: NIH , open-funder-registry 10.13039/100000002;
                Award ID: T32 GM008792‐17
                Funded by: Glassell Family Stem Cell Research Program
                Categories
                Standards, Protocols, Policies, and Regulations for Cell‐based Therapies
                Standards, Protocols, Policies, and Regulations for Cell‐based Therapies
                Custom metadata
                2.0
                April 2020
                Converter:WILEY_ML3GV2_TO_JATSPMC version:5.7.8 mode:remove_FC converted:30.03.2020

                adipose stem cells,adult hematopoietic stem cells,adult stem cells,bone marrow stromal cells,flow cytometry,heparin,mesenchymal stem cells,stem cells

                Comments

                Comment on this article