2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differentially Expressed Genes of Natural Killer Cells Can Distinguish Rheumatoid Arthritis Patients from Healthy Controls

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rheumatoid arthritis (RA) is one of the most prevalent autoimmune diseases, while its molecular triggers are not fully understood. A few studies have shown that natural killer (NK) cells may play either a pathogenic or a protective role in RA. In this study, we sought to explore NK cell markers that could be plausibly used in evaluating the differences among healthy controls and RA patients. Publicly available transcriptome datasets from RA patients and healthy volunteers were analyzed, in order to identify differentially expressed genes (DEGs) between 1. different immune cells as compared to NK cells, and 2. NK cells of RA patients and healthy controls. The identified DEGs were validated using 16 healthy controls and 17 RA patients. Peripheral blood mononuclear cells (PBMCs) were separated by Ficoll density gradient method, while NK cells were isolated using RosetteSep technique. RNA was extracted and gene expression was assessed using RT-qPCR. All selected genes were differentially expressed in NK cells compared to PBMCs. CD56, CXCL16, PECAM-1, ITGB7, BTK, TLR10, and IL-1β were significantly upregulated, while CCL2, CCR4, RELA and IBTK were downregulated in the NK cells of RA patients when compared to healthy controls. Therefore, these NK specific genes might be used as promising biomarkers for RA diagnosis.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies

          Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease that primarily affects the lining of the synovial joints and is associated with progressive disability, premature death, and socioeconomic burdens. A better understanding of how the pathological mechanisms drive the deterioration of RA progress in individuals is urgently required in order to develop therapies that will effectively treat patients at each stage of the disease progress. Here we dissect the etiology and pathology at specific stages: (i) triggering, (ii) maturation, (iii) targeting, and (iv) fulminant stage, concomitant with hyperplastic synovium, cartilage damage, bone erosion, and systemic consequences. Modern pharmacologic therapies (including conventional, biological, and novel potential small molecule disease-modifying anti-rheumatic drugs) remain the mainstay of RA treatment and there has been significant progress toward achieving disease remission without joint deformity. Despite this, a significant proportion of RA patients do not effectively respond to the current therapies and thus new drugs are urgently required. This review discusses recent advances of our  understanding of RA pathogenesis, disease modifying drugs, and provides perspectives on next generation therapeutics for RA.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reciprocal Activating Interaction between Natural Killer Cells and Dendritic Cells

            We analyzed the interaction between human peripheral blood natural killer (NK) cells and monocyte-derived immature dendritic cells (DC). Fresh NK cells were activated, as indicated by the induced expression of the CD69 antigen, and their cytolytic activity was strongly augmented by contact with lipopolysaccharide (LPS)-treated mature DC, or with immature DC in the presence of the maturation stimuli LPS, Mycobacterium tuberculosis or interferon (IFN)-α. Reciprocally, fresh NK cells cultured with immature DC in the presence of the maturation stimuli strongly enhanced DC maturation and interleukin (IL)-12 production. IL-2–activated NK cells directly induced maturation of DC and enhanced their ability to stimulate allogeneic naive CD4+ T cells. The effects of NK cells were cell contact dependent, although the secretion of IFN-γ and TNF also contributed to DC maturation. Within peripheral blood lymphocytes the reciprocal activating interaction with DC was restricted to NK cells, because the other lymphocyte subsets were neither induced to express CD69, nor induced to mature in contact with DC. These data demonstrated for the first time a bidirectional cross talk between NK cells and DC, in which NK cells activated by IL-2 or by mature DC induce DC maturation.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Rheumatoid arthritis. Pathophysiology and implications for therapy.

              E D Harris (1990)
                Bookmark

                Author and article information

                Journal
                Genes (Basel)
                Genes (Basel)
                genes
                Genes
                MDPI
                2073-4425
                30 April 2020
                May 2020
                : 11
                : 5
                : 492
                Affiliations
                [1 ]College of Medicine and Sharjah, Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE; U16101425@ 123456sharjah.ac.ae (M.Y.H.); amagazachi@ 123456sharjah.ac.ae (A.A.M.)
                [2 ]Department of Rheumatology, Ministry of Health and Prevention, Dubai 1853, UAE; suadhannawi@ 123456gmail.com
                Author notes
                Author information
                https://orcid.org/0000-0002-3586-6731
                https://orcid.org/0000-0002-7096-0731
                https://orcid.org/0000-0002-3310-678X
                Article
                genes-11-00492
                10.3390/genes11050492
                7290970
                32365786
                01e6506d-50ee-45e0-a2b0-cdf8ea775ad9
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 25 February 2020
                : 27 April 2020
                Categories
                Article

                rheumatoid arthritis,nk cells,biomarker,cxcl16,il-1beta
                rheumatoid arthritis, nk cells, biomarker, cxcl16, il-1beta

                Comments

                Comment on this article