15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Organ–Organ Crosstalk and Alcoholic Liver Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alcohol consumption is a common custom worldwide, and the toxic effects of alcohol on several target organs are well-understood. Given the poor prognosis of treating clinically-relevant alcoholic liver disease (ALD) (i.e., alcoholic hepatitis (AH) and cirrhosis), additional research is required to develop more effective therapies. While the stages of ALD have been well-characterized, targeted therapies to prevent or reverse this process in humans are still needed. Better understanding of risk factors and mechanisms underlying disease progression can lead to the development of rational therapies to prevent or reverse ALD in the clinic. A potential area of targeted therapy for ALD may be organ–organ communication in the early stages of the disease. In contrast to AH and end-stage liver diseases, the involvement of multiple organs in the development of ALD is less understood. The impact of these changes on pathology to the liver and other organs may not only influence disease progression during the development of the disease, but also outcomes of end stages diseases. The purpose of this review is to summarize the established and proposed communication between the liver and other organ systems that may contribute to the development and progression of liver disease, as well as to other organs. Potential mechanisms of this organ–organ communication are also discussed.

          Related collections

          Most cited references90

          • Record: found
          • Abstract: found
          • Article: not found

          Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration.

          Inflammation is implicated in the progressive nature of neurodegenerative diseases, such as Parkinson's disease, but the mechanisms are poorly understood. A single systemic lipopolysaccharide (LPS, 5 mg/kg, i.p.) or tumor necrosis factor alpha (TNFalpha, 0.25 mg/kg, i.p.) injection was administered in adult wild-type mice and in mice lacking TNFalpha receptors (TNF R1/R2(-/-)) to discern the mechanisms of inflammation transfer from the periphery to the brain and the neurodegenerative consequences. Systemic LPS administration resulted in rapid brain TNFalpha increase that remained elevated for 10 months, while peripheral TNFalpha (serum and liver) had subsided by 9 h (serum) and 1 week (liver). Systemic TNFalpha and LPS administration activated microglia and increased expression of brain pro-inflammatory factors (i.e., TNFalpha, MCP-1, IL-1beta, and NF-kappaB p65) in wild-type mice, but not in TNF R1/R2(-/-) mice. Further, LPS reduced the number of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra (SN) by 23% at 7-months post-treatment, which progressed to 47% at 10 months. Together, these data demonstrate that through TNFalpha, peripheral inflammation in adult animals can: (1) activate brain microglia to produce chronically elevated pro-inflammatory factors; (2) induce delayed and progressive loss of DA neurons in the SN. These findings provide valuable insight into the potential pathogenesis and self-propelling nature of Parkinson's disease. (c) 2007 Wiley-Liss, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Colonic microbiome is altered in alcoholism.

            Several studies indicate the importance of colonic microbiota in metabolic and inflammatory disorders and importance of diet on microbiota composition. The effects of alcohol, one of the prominent components of diet, on colonic bacterial composition is largely unknown. Mounting evidence suggests that gut-derived bacterial endotoxins are cofactors for alcohol-induced tissue injury and organ failure like alcoholic liver disease (ALD) that only occur in a subset of alcoholics. We hypothesized that chronic alcohol consumption results in alterations of the gut microbiome in a subgroup of alcoholics, and this may be responsible for the observed inflammatory state and endotoxemia in alcoholics. Thus we interrogated the mucosa-associated colonic microbiome in 48 alcoholics with and without ALD as well as 18 healthy subjects. Colonic biopsy samples from subjects were analyzed for microbiota composition using length heterogeneity PCR fingerprinting and multitag pyrosequencing. A subgroup of alcoholics have an altered colonic microbiome (dysbiosis). The alcoholics with dysbiosis had lower median abundances of Bacteroidetes and higher ones of Proteobacteria. The observed alterations appear to correlate with high levels of serum endotoxin in a subset of the samples. Network topology analysis indicated that alcohol use is correlated with decreased connectivity of the microbial network, and this alteration is seen even after an extended period of sobriety. We show that the colonic mucosa-associated bacterial microbiome is altered in a subset of alcoholics. The altered microbiota composition is persistent and correlates with endotoxemia in a subgroup of alcoholics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Metagenomic Analyses of Alcohol Induced Pathogenic Alterations in the Intestinal Microbiome and the Effect of Lactobacillus rhamnosus GG Treatment

              Enteric dysbiosis plays an essential role in the pathogenesis of alcoholic liver disease (ALD). Detailed characterization of the alterations in the gut microbiome is needed for understanding their pathogenic role in ALD and developing effective therapeutic approaches using probiotic supplementation. Mice were fed liquid Lieber-DeCarli diet without or with alcohol (5% v/v) for 6 weeks. A subset of mice were administered the probiotic Lactobacillus rhamnosus GG (LGG) from 6 to 8 weeks. Indicators of intestinal permeability, hepatic steatosis, inflammation and injury were evaluated. Metagenomic analysis of the gut microbiome was performed by analyzing the fecal DNA by amplification of the V3–V5 regions of the 16S rRNA gene and large-scale parallel pyrosequencing on the 454 FLX Titanium platform. Chronic ethanol feeding caused a decline in the abundance of both Bacteriodetes and Firmicutes phyla, with a proportional increase in the gram negative Proteobacteria and gram positive Actinobacteria phyla; the bacterial genera that showed the biggest expansion were the gram negative alkaline tolerant Alcaligenes and gram positive Corynebacterium. Commensurate with the qualitative and quantitative alterations in the microbiome, ethanol caused an increase in plasma endotoxin, fecal pH, hepatic inflammation and injury. Notably, the ethanol-induced pathogenic changes in the microbiome and the liver were prevented by LGG supplementation. Overall, significant alterations in the gut microbiome over time occur in response to chronic alcohol exposure and correspond to increases in intestinal barrier dysfunction and development of ALD. Moreover, the altered bacterial communities of the gut may serve as significant therapeutic target for the prevention/treatment of chronic alcohol intake induced intestinal barrier dysfunction and liver disease.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Biomolecules
                Biomolecules
                biomolecules
                Biomolecules
                MDPI
                2218-273X
                16 August 2017
                September 2017
                : 7
                : 3
                : 62
                Affiliations
                Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA; lgpool01@ 123456louisville.edu (L.G.P.); christine.dolin@ 123456louisville.edu (C.E.D.)
                Author notes
                [* ]Correspondence: gavin.arteel@ 123456louisville.edu ; Tel.: +1-(502)-852-5157; Fax: +1-(502)-852-3242
                Article
                biomolecules-07-00062
                10.3390/biom7030062
                5618243
                28812994
                01f9b1ef-9cb9-42e1-93f3-e8ed3e17135e
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 06 July 2017
                : 11 August 2017
                Categories
                Review

                ethanol,hepatic,pulmonary,inflammation,organ–organ axes
                ethanol, hepatic, pulmonary, inflammation, organ–organ axes

                Comments

                Comment on this article