14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protective effect of emodin on intestinal epithelial tight junction barrier integrity in rats with sepsis induced by cecal ligation and puncture

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study investigated the protective effects of emodin on intestinal epithelial tight junction (TJ) barrier integrity in cecal ligation and puncture (CLP)-induced septic rats and its possible mechanisms of action. Healthy male Sprague-Dawley rats were randomly divided into three groups (n=20 per group): Sham group, CLP group and CLP + emodin group. Animals were sacrificed at 12 and 24 h after the model was established. Abdominal aortic blood and specimens of the ileum were harvested for analysis. The histopathological changes in intestinal mucosa and the ultrastructures of intestinal epithelial cells were investigated using light microscopy and transmission electron microscopy. The integrity of the intestinal barrier was assessed by examining plasma diamine oxidase (DAO) levels and the ratio of urine lactulose to mannitol (L/M). The levels of the intestinal TJ proteins claudin-3, zonula occludens (ZO)-1 and occludin were detected using immunohistochemistry, western blotting and reverse transcription-quantitative PCR. The results showed that the pathological damage to intestinal mucosa and the intestinal tissue injury score in the CLP + emodin group were significantly reduced compared to those of the CLP group, and the differences were more obvious at 24 h compared with 12 h. DAO activity and the L/M ratio in the emodin pre-treatment group decreased significantly at 24 h compared with the CLP groups. The protein and mRNA levels of the TJ proteins claudin-3, ZO-1 and occludin in the emodin pre-treatment groups at 12 and 24 h were increased, while occludin mRNA level was found to be decreased compared with the CLP groups. The present study suggested that emodin may significantly reduce the damage to the intestinal epithelial barrier in sepsis, inhibit intestinal barrier permeability and protect intestinal barrier integrity. Emodin may protect intestinal barrier integrity by elevating expression levels of the TJ proteins claudin-3, ZO-1 and occludin in CLP rats.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Intestinal epithelial claudins: expression and regulation in homeostasis and inflammation.

          The intestinal epithelium forms a highly dynamic and selective barrier that controls absorption of fluid and solutes while restricting pathogen access to underlying tissues. Barrier properties are achieved by intercellular junctions that include an apical tight junction (TJ) and subjacent adherens junctions and desmosomes. The TJ tetraspan claudin proteins form pores between epithelial cells to control paracellular fluid and ion movement. In addition to regulation of barrier function, claudin family members control epithelial homeostasis and are expressed in a spatiotemporal manner in the intestinal crypt-luminal axis. This delicate balance of physiologic differential claudin protein expression is altered during mucosal inflammation. Inflammatory mediators influence transcriptional regulation, as well as endocytic trafficking, targeting, and retention of claudins in the TJ. Increased expression of intestinal epithelial claudin-1, -2, and -18 with downregulation of claudin-3, -4, -5, -7, -8, and -12 has been observed in intestinal inflammatory disorders. Such changes in claudin proteins modify the epithelial barrier function in addition to influencing epithelial and mucosal homeostasis. An improved understanding of the regulatory mechanisms that control epithelial claudin proteins will provide strategies to strengthen the epithelial barrier function and restore mucosal homeostasis in inflammatory disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway

            The intestinal epithelial barrier, composed of epithelial cells, tight junction proteins and intestinal secretions, prevents passage of luminal substances and antigens through the paracellular space. Dysfunction of the intestinal barrier integrity induced by toxins and pathogens is associated with a variety of gastrointestinal disorders and diseases. Although butyrate is known to enhance intestinal health, its role in the protection of intestinal barrier function is poorly characterized. Therefore, we investigated the effect of butyrate on intestinal epithelial integrity and tight junction permeability in a model of LPS-induced inflammation in IPEC-J2 cells. Butyrate dose-dependently reduced LPS impairment of intestinal barrier integrity and tight junction permeability, measured by trans-epithelial electrical resistance (TEER) and paracellular uptake of fluorescein isothiocyanate-dextran (FITC-dextran). Additionally, butyrate increased both mRNA expression and protein abundance of claudins-3 and 4, and influenced intracellular ATP concentration in a dose-dependent manner. Furthermore, butyrate prevented the downregulation of Akt and 4E-BP1 phosphorylation by LPS, indicating that butyrate might enhance tight junction protein abundance through mechanisms that included activation of Akt/mTOR mediated protein synthesis. The regulation of AMPK activity and intracellular ATP level by butyrate indicates that butyrate might regulate energy status of the cell, perhaps by serving as a nutrient substrate for ATP synthesis, to support intestinal epithelial barrier tight junction protein abundance. Our findings suggest that butyrate might protect epithelial cells from LPS-induced impairment of barrier integrity through an increase in the synthesis of tight junction proteins, and perhaps regulation of energy homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intestinal epithelial barrier function and tight junction proteins with heat and exercise.

              A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or "leaky" intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise.
                Bookmark

                Author and article information

                Journal
                Exp Ther Med
                Exp Ther Med
                ETM
                Experimental and Therapeutic Medicine
                D.A. Spandidos
                1792-0981
                1792-1015
                June 2020
                24 March 2020
                24 March 2020
                : 19
                : 6
                : 3521-3530
                Affiliations
                [1 ]Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, P.R. China
                [2 ]Department of Emergency, Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai 200062, P.R. China
                Author notes
                Correspondence to: Dr Yanni Sun, Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Putuo, Shanghai 200062, P.R. China sunstone1974@ 123456163.com

                *Contributed equally

                Article
                ETM-0-0-8625
                10.3892/etm.2020.8625
                7185184
                32346413
                01ffdb9a-0f46-4875-8cdb-f58d6ad19d11
                Copyright: © Li et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

                History
                : 04 June 2019
                : 17 January 2020
                Categories
                Articles

                Medicine
                cecal ligation and puncture,emodin,tight junction,claudin-3,zonula occludens-1,occludin
                Medicine
                cecal ligation and puncture, emodin, tight junction, claudin-3, zonula occludens-1, occludin

                Comments

                Comment on this article