39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pathogenic Potential of Two Sibling Species, Anisakis simplex (s.s.) and Anisakis pegreffii (Nematoda: Anisakidae): In Vitro and In Vivo Studies

      research-article
      , *
      BioMed Research International
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The pathogenic potentials of two sibling nematodes Anisakis simplex sensu stricto (s.s.) and A. pegreffii were compared by in vitro and in vivo studies. Live third-stage larvae of each species were subjected to agar blocks made using PBS or RPMI-1640, overlaid with different supernatants (artificial gastric juice, PBS, and RPMI-1640), and their penetration ability was compared. Their tolerance of artificial gastric juice was also tested. Further, they were introduced into rats by gastric intubation, and the in vivo locations of them were investigated. A. pegreffii showed higher penetration ability than A. simplex (s.s.) in most of the experimental conditions, except for the RPMI-1640 agar block overlaid with artificial gastric juice. In an acid tolerance test, the mean survival times were 6.1 days for A. simplex (s.s.) and 4.2 days for A. pegreffii. In an animal experiment, A. simplex (s.s.) stayed for a shorter time in the stomachs of rats than A. pegreffii. Some A. pegreffii and A. simplex (s.s.) were embedded in the gastric mucosa or freely existed in the abdominal cavity. All of these results suggest that A. pegreffii has the pathogenic potential to cause anisakidosis in humans when ingested, as does A. simplex (s.s.).

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity.

          Infection of humans with the nematode worm parasite Anisakis simplex was first described in the 1960s in association with the consumption of raw or undercooked fish. During the 1990s it was realized that even the ingestion of dead worms in food fish can cause severe hypersensitivity reactions, that these may be more prevalent than infection itself, and that this outcome could be associated with food preparations previously considered safe. Not only may allergic symptoms arise from infection by the parasites ("gastroallergic anisakiasis"), but true anaphylactic reactions can also occur following exposure to allergens from dead worms by food-borne, airborne, or skin contact routes. This review discusses A. simplex pathogenesis in humans, covering immune hypersensitivity reactions both in the context of a living infection and in terms of exposure to its allergens by other routes. Over the last 20 years, several studies have concentrated on A. simplex antigen characterization and innate as well as adaptive immune response to this parasite. Molecular characterization of Anisakis allergens and isolation of their encoding cDNAs is now an active field of research that should provide improved diagnostic tools in addition to tools with which to enhance our understanding of pathogenesis and controversial aspects of A. simplex allergy. We also discuss the potential relevance of parasite products such as allergens, proteinases, and proteinase inhibitors and the activation of basophils, eosinophils, and mast cells in the induction of A. simplex-related immune hypersensitivity states induced by exposure to the parasite, dead or alive.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes.

            The application of molecular systematics to the anisakid nematodes of the genera Anisakis, Pseudoterranova and Contracaecum, parasites of aquatic organisms, over the last two decades, has advanced the understanding of their systematics, taxonomy, ecology and phylogeny substantially. Here the results of this effort on this group of species from the early genetic works to the current status of their revised taxonomy, ecology and evolutionary aspects are reviewed for each of three parasitic groups. It has been shown that many anisakid morphospecies of Anisakis, Contracaecum and Pseudoterranova include a certain number of sibling species. Molecular genetic markers provided a rapid, precise means to screen and identify several species that serve as definitive and intermediate and or/paratenic hosts of the so far genetically characterized species. Patterns of differential distribution of anisakid nematodes in various definitive and intermediate hosts are presented. Differences in the life history of related species can be due both to differential host-parasite co-adaptation and co-evolution, and/or to interspecific competition, that can reduce the range of potential hosts in sympatric conditions. Phylogenetic hypotheses attempted for anisakid nematodes and the possible evolutionary scenarios that have been proposed inferred from molecular data, also with respect to the phylogeny of their hosts are presented for the parasite-host associations Anisakis-cetaceans and Contracaecum-pinnipeds, showing that codivergence and host-switching events could have accompanied the evolution of these groups of parasites. Finally, examples in which anisakid nematodes recognized genetically at the species level in definitive and intermediate/paratenic hosts from various geographical areas of the Boreal and Austral regions and their infection levels have been used as biological indicators of fish stocks and food-web integrity in areas at high versus low levels of habitat disturbance (pollution, overfishing, by-catch) are presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anisakiasis and Gastroallergic Reactions Associated with Anisakis pegreffii Infection, Italy

              Human cases of gastric anisakiasis caused by the zoonotic parasite Anisakis pegreffii are increasing in Italy. The disease is caused by ingestion of larval nematodes in lightly cooked or raw seafood. Because symptoms are vague and serodiagnosis is difficult, the disease is often misdiagnosed and cases are understimated.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2015
                21 January 2015
                : 2015
                : 983656
                Affiliations
                Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung 210-702, Republic of Korea
                Author notes

                Academic Editor: Stefano D'Amelio

                Article
                10.1155/2015/983656
                4317597
                25685821
                0202d2f4-bea8-45e4-b299-ce8ee784b39c
                Copyright © 2015 C.-H. Jeon and J.-H. Kim.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 October 2014
                : 21 December 2014
                : 27 December 2014
                Categories
                Research Article

                Comments

                Comment on this article