49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization and localization of cannabinoid receptors in rat brain: a quantitative in vitro autoradiographic study

      other

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A potent, synthetic cannabinoid was radiolabeled and used to characterize and precisely localize cannabinoid receptors in slide- mounted sections of rat brain and pituitary. Assay conditions for 3H- CP55,940 binding in Tris-HCl buffer with 5% BSA were optimized, association and dissociation rate constants determined, and the equilibrium dissociation constant (Kd) calculated (21 nM by liquid scintillation counting, 5.2 nM by quantitative autoradiography). The results of competition studies, using several synthetic cannabinoids, add to prior data showing enantioselectivity of binding and correlation of in vitro potencies with potencies in biological assays of cannabinoid actions. Inhibition of binding by guanine nucleotides was selective and profound: Nonhydrolyzable analogs of GTP and GDP inhibited binding by greater than 90%, and GMP and the nonhydrolyzable ATP analog showed no inhibition. Autoradiography showed great heterogeneity of binding in patterns of labeling that closely conform to cytoarchitectural and functional domains. Very dense 3H-CP55,940 binding is localized to the basal ganglia (lateral caudate-putamen, globus pallidus, entopeduncular nucleus, substantia nigra pars reticulata), cerebellar molecular layer, innermost layers of the olfactory bulb, and portions of the hippocampal formation (CA3 and dentate gyrus molecular layer). Moderately dense binding is found throughout the remaining forebrain. Sparse binding characterizes the brain stem and spinal cord. Densitometry confirmed the quantitative heterogeneity of cannabinoid receptors (10 nM 3H-CP55,940 binding ranged in density from 6.3 pmol/mg protein in the substantia nigra pars reticulata to 0.15 pmol/mg protein in the anterior lobe of the pituitary). The results suggest that the presently characterized cannabinoid receptor mediates physiological and behavioral effects of natural and synthetic cannabinoids, because it is strongly coupled to guanine nucleotide regulatory proteins and is discretely localized to cortical, basal ganglia, and cerebellar structures involved with cognition and movement.

          Related collections

          Author and article information

          Journal
          J Neurosci
          J. Neurosci
          jneuro
          The Journal of Neuroscience
          Society for Neuroscience
          0270-6474
          1529-2401
          1 February 1991
          : 11
          : 2
          : 563-583
          Affiliations
          Section on Functional Neuroanatomy, National Institute of Mental Health, Bethesda, Maryland 20892.
          Article
          PMC6575215 PMC6575215 6575215 jneuro;11/2/563
          10.1523/JNEUROSCI.11-02-00563.1991
          6575215
          1992016
          0204e53b-f64b-4e4e-a021-a53e33d41292
          © 1991 by Society for Neuroscience
          History
          Categories
          Articles
          Custom metadata
          11/2/563
          563

          Comments

          Comment on this article