22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins

      ,
      Brain Research Reviews
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references1,151

          • Record: found
          • Abstract: found
          • Article: not found

          Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis.

          Apoptosis plays an important role during neuronal development, and defects in apoptosis may underlie various neurodegenerative disorders. To characterize molecular mechanisms that regulate neuronal apoptosis, the contributions to cell death of mitogen-activated protein (MAP) kinase family members, including ERK (extracellular signal-regulated kinase), JNK (c-JUN NH2-terminal protein kinase), and p38, were examined after withdrawal of nerve growth factor (NGF) from rat PC-12 pheochromocytoma cells. NGF withdrawal led to sustained activation of the JNK and p38 enzymes and inhibition of ERKs. The effects of dominant-interfering or constitutively activated forms of various components of the JNK-p38 and ERK signaling pathways demonstrated that activation of JNK and p38 and concurrent inhibition of ERK are critical for induction of apoptosis in these cells. Therefore, the dynamic balance between growth factor-activated ERK and stress-activated JNK-p38 pathways may be important in determining whether a cell survives or undergoes apoptosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            AP-1 function and regulation.

            AP-1 (activating protein-1) is a collective term referring to dimeric transcription factors composed of Jun, Fos or ATF (activating transcription factor) subunits that bind to a common DNA site, the AP-1-binding site. As the complexity of our knowledge of AP-1 factors has increased, our understanding of their physiological function has decreased. This trend, however, is beginning to be reversed due to the recent studies of gene-knockout mice and cell lines deficient in specific AP-1 components. Such studies suggest that different AP-1 factors may regulate different target genes and thus execute distinct biological functions. Also, the involvement of AP-1 factors in functions such as cell proliferation and survival has been made somewhat clearer as a result of such studies. In addition, there has been considerable progress in understanding some of the mechanisms and signaling pathways involved in the regulation of AP-1 activity. In addition to regulation by heterodimerization between Jun, Fos and ATF proteins, AP-1 activity is regulated through interactions with specific protein kinases and a variety of transcriptional coactivators.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain.

              The ultraviolet (UV) response of mammalian cells is characterized by a rapid and selective increase in gene expression mediated by AP-1 and NF-kappa B. The effect on AP-1 transcriptional activity results, in part, from enhanced phosphorylation of the c-Jun NH2-terminal activation domain. Here, we describe the molecular cloning and characterization of JNK1, a distant relative of the MAP kinase group that is activated by dual phosphorylation at Thr and Tyr during the UV response. Significantly, Ha-Ras partially activates JNK1 and potentiates the activation caused by UV. JNK1 binds to the c-Jun transactivation domain and phosphorylates it on Ser-63 and Ser-73. Thus, JNK1 is a component of a novel signal transduction pathway that is activated by oncoproteins and UV irradiation. These properties indicate that JNK1 activation may play an important role in tumor promotion.
                Bookmark

                Author and article information

                Journal
                Brain Research Reviews
                Brain Research Reviews
                Elsevier BV
                01650173
                December 1998
                December 1998
                : 28
                : 3
                : 370-490
                Article
                10.1016/S0165-0173(98)00018-6
                020f39fe-3b38-4a59-b4c2-22c5d1810a34
                © 1998

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article