2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Benefits of glycopyrrolate/formoterol fumarate metered dose inhaler (GFF MDI) in improving lung function and reducing exacerbations in patients with moderate-to-very severe COPD: a pooled analysis of the PINNACLE studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The Phase III PINNACLE studies assessed the efficacy and safety of glycopyrrolate/formoterol fumarate metered dose inhaler (GFF MDI), a dual long-acting bronchodilator for chronic obstructive pulmonary disease (COPD). Here we present a pre-specified pooled analysis of PINNACLE-1, PINNACLE-2, and PINNACLE-4.

          Methods

          PINNACLE-1, -2, and -4 were multicenter, double-blind, randomized controlled trials that enrolled patients with moderate-to-very severe COPD, with no requirement for exacerbation history or a high symptom burden. Patients received GFF MDI 18/9.6 μg, glycopyrrolate (GP) MDI 18 μg, formoterol fumarate (FF) MDI 9.6 μg, or placebo MDI, twice-daily for 24 weeks. The primary endpoint of the pooled analysis was the change from baseline in morning pre-dose trough forced expiratory volume in 1 s (FEV 1) at week 24. Secondary endpoints included COPD exacerbations and clinically important deterioration (CID). Adverse events were also assessed.

          Results

          The pooled intent-to-treat population included 4983 patients; of these, 61.9% had a COPD assessment test (CAT) score ≥15, and 25.0% had experienced ≥1 moderate/severe exacerbation in the past year. At week 24, GFF MDI improved morning pre-dose trough FEV 1 versus GP MDI (least squares mean [LSM] difference [95% confidence interval (CI)]: 59 mL [43, 75]), FF MDI (65 mL [48, 81]), and placebo MDI (146 mL [125, 166]); all p < 0.0001. GFF MDI reduced the risk of a moderate/severe exacerbation by 18% ( p = 0.0168), 15% ( p = 0.0628), and 28% ( p = 0.0012) compared with GP MDI, FF MDI, and placebo MDI, respectively. In general, exacerbation risk reduction with GFF MDI versus comparators was greater in subgroups of symptomatic patients (CAT ≥15) and those who had an exacerbation history, than in the pooled intent-to-treat population. The risk of CID was also lower with GFF MDI versus GP MDI (23% decrease), FF MDI (17%), and placebo MDI (49%); all p < 0.0001. All treatments were well tolerated, with no unexpected safety signals.

          Conclusions

          This pooled analysis of the PINNACLE studies demonstrated that GFF MDI improved lung function and reduced the risk of exacerbations compared with monocomponents and placebo in patients with COPD. Exacerbation reductions with GFF MDI versus comparators were generally greater in patients with higher symptom burden and those with exacerbation history.

          Trial registration

          ClinicalTrials.gov NCT01854645, NCT01854658, and NCT02343458. Registered 13 May 2013 ( NCT01854645, NCT01854658) and 6 January 2015 ( NCT02343458).

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Dual bronchodilation with QVA149 versus single bronchodilator therapy: the SHINE study

          Introduction Bronchodilators are the cornerstone of symptomatic management of chronic obstructive pulmonary disease (COPD) [1]. Current guidelines recommend treatment with one or more long-acting bronchodilators for patients with moderate-to-very-severe COPD [1]. The use of two bronchodilators with different mechanisms of action has been shown to provide additional benefits compared with either given alone, without significantly increasing side-effects [2, 3]. Both indacaterol, a long-acting β2-agonist (LABA), and tiotropium, a long-acting muscarinic antagonist (LAMA), are effective as monotherapies and have acceptable safety profiles [4, 5]. In addition, their concurrent use has been shown to provide superior bronchodilation and improvement in air trapping compared with tiotropium alone [6]. Glycopyrronium (NVA237) is a recently approved once-daily LAMA for the treatment of moderate-to-severe COPD, and has been shown to provide rapid and sustained improvements in lung function, dyspnoea, health status, exercise endurance and exacerbation risk, with improvements similar to tiotropium and a safety profile similar to placebo [7–9]. QVA149 is a novel once-daily dual bronchodilator containing a fixed dose of the LABA indacaterol with the LAMA glycopyrronium. In patients with COPD, QVA149 has demonstrated rapid and sustained bronchodilation, which is significantly superior to that observed with indacaterol alone or placebo, and it is well tolerated, with an adverse event profile similar to placebo [10, 11]. In the current SHINE study, we sought to confirm the “rule of combination” [12] that dual bronchodilation with QVA149 will provide additional therapeutic benefits compared to the monocomponents indacaterol and glycopyrronium, as well as compared to tiotropium, the current gold standard of care, and placebo in patients with moderate-to-severe COPD. Methods Study design The study was a multicentre, randomised, double-blind, parallel-group, placebo- and active-controlled 26-week trial, and comprised a washout, run-in and the 26-week treatment period, with 30 days of follow-up after the last visit (fig. 1). The first patient’s first visit was September 21, 2010, and the last patient’s last visit was February 10, 2012. Patients receiving fixed-dose combinations of LABA/inhaled corticosteroid (ICS) were switched to an equivalent dose of ICS monotherapy. After screening, eligible patients were randomised in a 2:2:2:2:1 ratio (via interactive response technology) to treatment with double-blind QVA149 (indacaterol 110 μg/glycopyrronium 50 μg), indacaterol 150 μg, glycopyrronium 50 μg, open-label tiotropium 18 μg or placebo. All medications were administered once daily in the morning via the Breezhaler® (Novartis Pharma AG, Stein, Switzerland) device except for tiotropium, which was administered via the HandiHaler® (Boehringer Ingelheim, Ingelheim, Germany) device. A salbutamol/albuterol pressurised metered-dose inhaler was provided as rescue medication. Additional details of the study design and randomisation/blinding procedures are included in the online supplementary material. Figure 1– The SHINE study design. Patients Participants were aged ≥40 years, had moderate-to-severe stable COPD (stage II or III according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2008 criteria [13]) and a smoking history of ≥10 pack-years. At screening, they were required to have a post-bronchodilator forced expiratory volume in 1 s (FEV1) ≥30% and 100 mL or >200 mL in trough FEV1 at week 26). Figure 3– Trough forced expiratory volume in 1 s (FEV1) a) at week 26 and b) over the entire 26-week treatment period. a) Data are presented as least squares mean±se. One-sided adjusted p-values are presented for comparisons in the statistical gatekeeping procedure and two-sided p-values are presented for all other comparisons. b) QVA149 was superior to all active treatments and placebo at all timepoints (all p 30 days after the last dose of study drug but before the end of the follow-up visit (indacaterol (n = 1): pneumonia and glycopyrronium (n = 1): colon cancer). None of the deaths were considered by the investigator to be related to the study drug. Discussion Combining two bronchodilators with different mechanisms of action has the potential to enhance efficacy compared with single agents without increasing adverse effects [2, 3]. In the SHINE study, dual bronchodilation with QVA149, administered once-daily, provided superior improvements in lung function compared with its monocomponents indacaterol and glycopyrronium given alone, as well as tiotropium and placebo. Improvement in the primary end-point, trough FEV1 was both statistically and clinically significant (considered to be ≥100 mL in COPD) over placebo, and versus active comparators it approached clinical significance. Furthermore, lung function improvements with QVA149 were superior at their peak and, in a subset of patients monitored over 24 h, throughout the day. Similar trends to the overall population were observed in subgroup analyses. Improvements in lung function versus placebo were greater in patients with moderate versus severe COPD; however, statistically and clinically significant improvements in trough FEV1 were seen for both moderate and severe patient subgroups. Improvements in lung function were not influenced by patient age, sex or concurrent use of ICS. Furthermore, they were maintained throughout the 26-week treatment period, and the onset of action of QVA149 was confirmed to be rapid, similar to that of a short-acting β2-agonist. These beneficial effects of QVA149 on lung function were paralleled by statistically significant improvements in other clinically important end-points: dyspnoea, health status and patient symptoms and reduced rescue medication use. QVA149 was significantly superior to placebo and tiotropium for both the TDI and SGRQ total score at week 26; no other active treatment achieved a significant improvement in SGRQ versus placebo. Furthermore, a significantly higher proportion of patients on QVA149 achieved a clinically meaningful improvement in TDI (≥1 unit) and SGRQ (≥4 units) versus placebo and tiotropium. QVA149 was well tolerated over the 26-week study with an adverse event profile similar to that of placebo. In addition, no actual or potential safety signals were observed with the combination compared with the single bronchodilators. Despite previous concerns that LABAs and LAMAs may present a risk of cardiovascular events [14–17], the CCV safety profile of this LABA/LAMA combination was similar to that of placebo. The results of this study are consistent with those of several published studies that have investigated the efficacy and safety of free combinations of LABAs and LAMAs in patients with COPD [6, 18–20], but this is the first to demonstrate the additive benefit of the two classes of long-acting bronchodilator in a combination device. Previous studies have been limited by different durations of actions of the LAMA and LABA components (i.e. formoterol or salmeterol having to be administered twice daily). Our study confirms that the additive benefit of indacaterol and glycopyrronium persists over 24 h, without tachyphylaxis, providing further support for the use of dual bronchodilators. The present study supports the GOLD 2013 strategy alternative choice recommendation that the addition of a second bronchodilator in patients with moderate-to-severe COPD (groups B–D) may optimise symptom benefit [1]. In “low-risk” patients who remain symptomatic on a single bronchodilator (group B), the combination of indacaterol plus glycopyrronium in a single inhaler may lead to significantly improved outcomes compared with LABA or LAMA monotherapy. In “high-risk” patients with severe or very severe COPD (high symptom level and historical exacerbation frequency; groups C and D in the GOLD management strategy [1]) a LABA plus a LAMA is recommended as an alternative to a LABA/ICS combination (group C) or ICS plus LABA and/or LAMA (group D). In comparing LABA plus LAMA and LABA/ICS combination, improvements in lung function achieved with two bronchodilators are expected to be numerically superior to the single bronchodilator in LABA/ICS combinations. In the TORCH (Towards a Revolution in COPD Health) study, combination therapy achieved 50 mL and 44 mL improvement in FEV1 versus salmeterol and fluticasone propionate alone, respectively; however, the LABA/ICS combination is selected for its demonstrated effect on COPD exacerbations [21]. A real-world analysis has indicated that a high proportion of patients at low risk for exacerbations (groups A or B) may be receiving ICS inappropriately [22]. Some patients currently receiving combined LABA/ICS may do better on a LABA/LAMA combination [23]. This would provide dual bronchodilation without the need for ICS treatment, and therefore without the inherent risks of ICS [24], as recommended by the GOLD 2013 strategy [1]. The 26-week ILLUMINATE study supports the use of QVA149 versus LABA/ICS in this population [25]. QVA149 once daily was associated with significant improvements in lung function and dyspnoea versus twice-daily salmeterol/fluticasone. Furthermore, the current SHINE study provides evidence for the additive benefit and safety of a LABA/LAMA combination, demonstrating that QVA149 is superior for most end-points over tiotropium, which is currently recommended as an alternative to LABA/ICS combination, alone or in combination with a LABA. Features of QVA149 that may help to reduce nonadherence to treatment, which remains high in COPD [26], are the convenience of once-daily dosing [27] which is generally preferred by patients [26, 28, 29] and the need for only a single inhaler. Furthermore, the rapid onset of action may be evident to patients as they wake at the nadir of their daily lung function cycle when symptoms are most prominent [30]. However, these advantages of a LABA/LAMA combination and QVA149 are speculative and need to be tested in further prospective studies. We acknowledge several limitations in our study. Firstly, with regards to the study population, we did not intend to include the full range of COPD severities that might benefit from dual long-acting bronchodilators. Since our main objective was to assess the incremental benefit of two bronchodilators in combination (versus one), we elected to recruit only patients with moderate-to-severe COPD. As in our study, results of studies involving LABA/ICS combinations (e.g. the TORCH study [21]) and tiotropium (e.g. the UPLIFT study [31]), have confirmed that patients with moderate disease showed the greatest improvements in lung function. The apparent high reversibility of FEV1 (20%) is attributable to the fact that both salbutamol and ipratropium were administered during this test, and reversibility of this magnitude is not unusual in moderate COPD. We went to lengths to exclude patients with asthma (inclusion criteria: age of onset of symptoms >40 years, absence of rhinitis and blood eosinophil count of <600 cells·mm−3 (see the online supplementary material)). Finally, unlike most COPD studies, which enrich for patients with exacerbations, in our study we excluded patients with a recent COPD exacerbation (in the previous 6 weeks) to reduce the impact of withdrawal due to exacerbations on the primary spirometric end-point. For this reason, along with the fact that patients had milder disease and the study was relatively short (6 months), the present study does not provide useful information on the effect of QVA149 on COPD exacerbations, which has been examined in studies of appropriate design (SPARK study [32]). A further limitation of our study is the difficulty in evaluating the clinical significance of spirometric and other clinical end-points (TDI and SGRQ) versus active (monocomponent) treatments. Although statistically superior to all monocomponents, QVA149 attained the MCID for only some comparisons (fig. 3 and online supplementary table S3). However, it should be noted that the MCID for a trough FEV1 of 100 mL is generally used for comparisons versus placebo, and that the mean improvements of 70, 80 and 90 mL versus indacaterol, glycopyrronium and tiotropium, respectively, approach this threshold value; comparative data for TDI and SGRQ also support this trend. In conclusion, once-daily QVA149 demonstrated superior efficacy compared with placebo, its monocomponents indacaterol and glycopyrronium, and the current standard of care (tiotropium) in patients with moderate-to-severe COPD. QVA149 was also associated with an adverse event profile that was similar to placebo with no additional safety signal compared with monotherapies. This is the first study to demonstrate the advantage of dual bronchodilation with a fixed-dose LABA/LAMA combination, compared with a single bronchodilator in patients with moderate-to-severe COPD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The measurement of dyspnea. Contents, interobserver agreement, and physiologic correlates of two new clinical indexes.

            To improve the clinical measurement of dyspnea, we developed a baseline dyspnea index that rated the severity of dyspnea at a single state and a transition dyspnea index that denoted changes from that baseline. The scores in both indexes depend on ratings for three different categories: functional impairment; magnitude of task, and magnitude of effort. At the baseline state, dyspnea was rated in five grades from 0 (severe) to 4 (unimpaired) for each category. The ratings for each of the three categories were added to form a baseline focal score (range, 0 to 12). At the transition period, changes in dyspnea were rated by seven grades, ranging from -3 (major deterioration), to +3 (major improvement). The ratings for each of the three categories were added to form a transition focal score (range, -9 to +9). In 38 patients tested with respiratory disease, interobserver agreement was highly satisfactory for both indexes. The baseline focal score had the highest correlation (r = 0.60; P less than 0.001) with the 12-minute walking distance (12 MW), while significant, but lower, correlations existed for lung function. For the transition focal score, there was a significant correlation only with the 12 MW (r = 0.33; p = 0.04). These results indicate that dyspnea can receive a direct clinical rating that provides important information not disclosed by customary physiologic tests.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Good Publication Practice for Communicating Company-Sponsored Medical Research: GPP3.

              This updated Good Publication Practice (GPP) guideline, known as GPP3, builds on earlier versions and provides recommendations for individuals and organizations that contribute to the publication of research results sponsored or supported by pharmaceutical, medical device, diagnostics, and biotechnology companies. The recommendations are designed to help individuals and organizations maintain ethical and transparent publication practices and comply with legal and regulatory requirements. These recommendations cover publications in peer-reviewed journals and presentations (oral or poster) at scientific congresses. The International Society for Medical Publication Professionals invited more than 3000 professionals worldwide to apply for a position on the steering committee, or as a reviewer, for this guideline. The GPP2 authors reviewed all applications (n = 241) and assembled an 18-member steering committee that represented 7 countries and a diversity of publication professions and institutions. From the 174 selected reviewers, 94 sent comments on the second draft, which steering committee members incorporated after discussion and consensus. The resulting guideline includes new sections (Principles of Good Publication Practice for Company-Sponsored Medical Research, Data Sharing, Studies That Should Be Published, and Plagiarism), expands guidance on the International Committee of Medical Journal Editors' authorship criteria and common authorship issues, improves clarity on appropriate author payment and reimbursement, and expands information on the role of medical writers. By following good publication practices (including GPP3), individuals and organizations will show integrity; accountability; and responsibility for accurate, complete, and transparent reporting in their publications and presentations.
                Bookmark

                Author and article information

                Contributors
                fjm2003@med.cornell.edu
                Journal
                Respir Res
                Respir. Res
                Respiratory Research
                BioMed Central (London )
                1465-9921
                1465-993X
                25 May 2020
                25 May 2020
                2020
                : 21
                : 128
                Affiliations
                [1 ]Weill Cornell Medical College, New York-Presbyterian Hospital/Weill Cornell Medical Center, 525 E 68th St, Room M-522, Box 130, New York, NY 10065 USA
                [2 ]GRID grid.8241.f, ISNI 0000 0004 0397 2876, Scottish Centre for Respiratory Research, Ninewells Hospital, , University of Dundee, ; Dundee, Scotland UK
                [3 ]GRID grid.9764.c, ISNI 0000 0001 2153 9986, LungenClinic Grosshansdorf and Christian-Albrechts University Kiel, Airway Research Center North, Member of the German Center for Lung Research (DZL), ; Kiel, Germany
                [4 ]GRID grid.4868.2, ISNI 0000 0001 2171 1133, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, , Queen Mary University of London, ; London, UK
                [5 ]Pulmonary Research Institute of Southeast Michigan, Farmington Hills, MI USA
                [6 ]GRID grid.273335.3, ISNI 0000 0004 1936 9887, University at Buffalo, SUNY, ; Buffalo, NY USA
                [7 ]S. Carolina Pharmaceutical Research, Spartanburg, SC USA
                [8 ]formerly of AstraZeneca, Wilmington, DE USA
                [9 ]GRID grid.417815.e, ISNI 0000 0004 5929 4381, AstraZeneca, ; Cambridge, UK
                [10 ]GRID grid.418152.b, AstraZeneca, ; Morristown, NJ USA
                Article
                1388
                10.1186/s12931-020-01388-y
                7249639
                32450869
                020fa824-3ccc-432f-a18c-4306c795629b
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 18 December 2019
                : 5 May 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100004325, AstraZeneca;
                Award ID: NA
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Respiratory medicine
                chronic obstructive pulmonary disease,clinically important deterioration,exacerbations,fixed-dose combination,formoterol fumarate dihydrate,gff mdi,glycopyrronium,lama/laba,metered dose inhaler,symptomatic

                Comments

                Comment on this article