17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ouabain Does Not Induce Selective Spiral Ganglion Cell Degeneration in Guinea Pigs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Round window membrane (RWM) application of ouabain is known to selectively destroy type I spiral ganglion cells (SGCs) in cochleas of several rodent species, while leaving hair cells intact. This protocol has been used in rats and Mongolian gerbils, but observations in the guinea pig are conflicting. This is why we reinvestigated the effect of ouabain on the guinea pig cochlea. Ouabain solutions of different concentrations were placed, in a piece of gelfoam, upon the RWM of the right cochleas. Auditory function was assessed using acoustically evoked auditory brainstem responses (aABR). Finally, cochleas were fixed and processed for histological examination. Due to variability within treatment groups, histological data was pooled and three categories based upon general histological observations were defined: cochleas without outer hair cell (OHC) and SGC loss (Category 1), cochleas with OHC loss only (Category 2), and cochleas with OHC and SGC loss (Category 3). Animals treated with 1 mM or 10 mM ouabain showed shifts in hearing thresholds, corresponding with varying histological changes in their cochleas. Most cochleas exhibited complete outer hair cell loss in the basal and middle turns, while some had no changes, together with either moderate or near-complete loss of SGCs. Neither loss of inner hair cells nor histological changes of the stria vascularis were observed in any of the animals. Cochleas in Category 1 had normal aABRs and morphology. On average, in Category 2 OHC loss was 46.0±5.7%, SGC loss was below threshold, ABR threshold shift was 44.9±2.7 dB, and ABR wave II amplitude was decreased by 17.1±3.8 dB. In Category 3 OHC loss was 68.3±6.9%, SGC loss was 49.4±4.3%, ABR threshold shift was 39.0±2.4 dB, and ABR amplitude was decreased by 15.8±1.6 dB. Our results show that ouabain does not solely destroy type I SGCs in the guinea pig cochlea.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Restoration of auditory evoked responses by human ES cell-derived otic progenitors

          Deafness is a condition with a high prevalence worldwide, produced primarily by the loss of the sensory hair cells and their associated spiral ganglion neurons (SGNs). Of all the forms of deafness, auditory neuropathy is of a particular concern. This condition, defined primarily by damage to the SGNs with relative preservation of the hair cells 1 , is responsible for a substantial proportion of patients with hearing impairment 2 . While the loss of hair cells can be circumvented partially by a cochlear implant, no routine treatment is available for sensory neuron loss since poor innervation limits the prospective performance of an implant 3 . Using stem cells to recover the damaged sensory circuitry is a potential therapeutic strategy. Here, we present a protocol to induce differentiation from human embryonic stem cells (hESCs) using signals involved in the initial specification of the otic placode. We obtained two types of otic progenitors able to differentiate in vitro into hair cell-like cells and auditory neurons that display expected electrophysiological properties. Moreover, when transplanted into an auditory neuropathy model, otic neuroprogenitors engraft, differentiate and significantly improve auditory evoked response (ABR) thresholds. These results should stimulate further research into the development of a cell-based therapy for deafness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Contribution of auditory nerve fibers to compound action potential of the auditory nerve.

            Sound-evoked compound action potential (CAP), which captures the synchronous activation of the auditory nerve fibers (ANFs), is commonly used to probe deafness in experimental and clinical settings. All ANFs are believed to contribute to CAP threshold and amplitude: low sound pressure levels activate the high-spontaneous rate (SR) fibers, and increasing levels gradually recruit medium- and then low-SR fibers. In this study, we quantitatively analyze the contribution of the ANFs to CAP 6 days after 30-min infusion of ouabain into the round window niche. Anatomic examination showed a progressive ablation of ANFs following increasing concentration of ouabain. CAP amplitude and threshold plotted against loss of ANFs revealed three ANF pools: 1) a highly ouabain-sensitive pool, which does not participate in either CAP threshold or amplitude, 2) a less sensitive pool, which only encoded CAP amplitude, and 3) a ouabain-resistant pool, required for CAP threshold and amplitude. Remarkably, distribution of the three pools was similar to the SR-based ANF distribution (low-, medium-, and high-SR fibers), suggesting that the low-SR fiber loss leaves the CAP unaffected. Single-unit recordings from the auditory nerve confirmed this hypothesis and further showed that it is due to the delayed and broad first spike latency distribution of low-SR fibers. In addition to unraveling the neural mechanisms that encode CAP, our computational simulation of an assembly of guinea pig ANFs generalizes and extends our experimental findings to different species of mammals. Altogether, our data demonstrate that substantial ANF loss can coexist with normal hearing threshold and even unchanged CAP amplitude.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single-neuron labeling and chronic cochlear pathology. III. Stereocilia damage and alterations of threshold tuning curves.

              Tuning curves were obtained from 100 to 150 auditory-nerve fibers spanning the range of characteristic frequencies (CFs) in each of eight cases of permanent noise-induced and three cases of permanent kanamycin-induced threshold shift. In each ear, from one to six neurons were intracellularly labeled with horseradish peroxidase. Locating the labeled terminals in plastic-embedded surface preparations of the cochlea enabled us to accurately correlate particular tuning-curve abnormalities with the condition of the sensory cells generating them. The correlations between structural and functional changes suggest that a normal tuning-curve tip requires that the stereocilia on both the IHCs and OHCs (especially those from the first row) be normal. Selective damage to the OHCs is associated with elevation of the tips and hypersensitivity of the tuning-curve tails. This tuning-curve pattern also originates from cochlear regions at the basal border of hair cell lesions where the local hair cells (and their stereocilia) appear completely normal at the light-microscopic level. Total destruction of the OHCs in a region in which the IHCs appear normal (as can happen in cases of kanamycin poisoning) is associated with bowl-shaped tuning curves which appear to lack a tip. Combined damage to the IHCs and OHCs (as typically happens in cases of acoustic trauma) is invariably associated with elevation of both tips and tails on the tuning curve. A framework for the interpretation of the results is suggested in which the activity of the OHCs is transmitted via the tectorial membrane to the tall row of stereocilia on the IHCs.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2018
                31 July 2018
                : 2018
                : 1568414
                Affiliations
                1Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2300 RC Leiden, Netherlands
                2Percuros B.V., 7522 NB Enschede, Netherlands
                3Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, 3508 GA Utrecht, Netherlands
                4Brain Center Rudolf Magnus, University Medical Center Utrecht, 3508 GA Utrecht, Netherlands
                5Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, 2300 RC Leiden, Netherlands
                Author notes

                Academic Editor: Claus-Peter Richter

                Author information
                http://orcid.org/0000-0002-1180-3314
                http://orcid.org/0000-0001-8704-2999
                Article
                10.1155/2018/1568414
                6091334
                0218fe58-a607-4a68-88bc-2ddd20fa3d5e
                Copyright © 2018 Timo Schomann et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 March 2018
                : 24 May 2018
                : 28 June 2018
                Funding
                Funded by: MED-EL
                Funded by: Stichting Het Heinsius-Houbolt Fonds
                Funded by: European Commission of the H2020-MSCA-RISE-2014
                Award ID: 644373
                Funded by: H2020-MSCA-RISE-2016
                Award ID: 734684
                Categories
                Research Article

                Comments

                Comment on this article