11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Germ line–inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Related collections

          Most cited references 34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          featureCounts: An efficient general-purpose program for assigning sequence reads to genomic features

           ,  ,   (2013)
          Next-generation sequencing technologies generate millions of short sequence reads, which are usually aligned to a reference genome. In many applications, the key information required for downstream analysis is the number of reads mapping to each genomic feature, for example to each exon or each gene. The process of counting reads is called read summarization. Read summarization is required for a great variety of genomic analyses but has so far received relatively little attention in the literature. We present featureCounts, a read summarization program suitable for counting reads generated from either RNA or genomic DNA sequencing experiments. featureCounts implements highly efficient chromosome hashing and feature blocking techniques. It is considerably faster than existing methods (by an order of magnitude for gene-level summarization) and requires far less computer memory. It works with either single or paired-end reads and provides a wide range of options appropriate for different sequencing applications. featureCounts is available under GNU General Public License as part of the Subread (http://subread.sourceforge.net) or Rsubread (http://www.bioconductor.org) software packages.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A unique chromatin signature uncovers early developmental enhancers in humans.

            Cell-fate transitions involve the integration of genomic information encoded by regulatory elements, such as enhancers, with the cellular environment. However, identification of genomic sequences that control human embryonic development represents a formidable challenge. Here we show that in human embryonic stem cells (hESCs), unique chromatin signatures identify two distinct classes of genomic elements, both of which are marked by the presence of chromatin regulators p300 and BRG1, monomethylation of histone H3 at lysine 4 (H3K4me1), and low nucleosomal density. In addition, elements of the first class are distinguished by the acetylation of histone H3 at lysine 27 (H3K27ac), overlap with previously characterized hESC enhancers, and are located proximally to genes expressed in hESCs and the epiblast. In contrast, elements of the second class, which we term 'poised enhancers', are distinguished by the absence of H3K27ac, enrichment of histone H3 lysine 27 trimethylation (H3K27me3), and are linked to genes inactive in hESCs and instead are involved in orchestrating early steps in embryogenesis, such as gastrulation, mesoderm formation and neurulation. Consistent with the poised identity, during differentiation of hESCs to neuroepithelium, a neuroectoderm-specific subset of poised enhancers acquires a chromatin signature associated with active enhancers. When assayed in zebrafish embryos, poised enhancers are able to direct cell-type and stage-specific expression characteristic of their proximal developmental gene, even in the absence of sequence conservation in the fish genome. Our data demonstrate that early developmental enhancers are epigenetically pre-marked in hESCs and indicate an unappreciated role of H3K27me3 at distal regulatory elements. Moreover, the wealth of new regulatory sequences identified here provides an invaluable resource for studies and isolation of transient, rare cell populations representing early stages of human embryogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms of polycomb gene silencing: knowns and unknowns.

              Polycomb proteins form chromatin-modifying complexes that implement transcriptional silencing in higher eukaryotes. Hundreds of genes are silenced by Polycomb proteins, including dozens of genes that encode crucial developmental regulators in organisms ranging from plants to humans. Two main families of complexes, called Polycomb repressive complex 1 (PRC1) and PRC2, are targeted to repressed regions. Recent studies have advanced our understanding of these complexes, including their potential mechanisms of gene silencing, the roles of chromatin modifications, their means of delivery to target genes and the functional distinctions among variant complexes. Emerging concepts include the existence of a Polycomb barrier to transcription elongation and the involvement of non-coding RNAs in the targeting of Polycomb complexes. These findings have an impact on the epigenetic programming of gene expression in many biological systems.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                July 13 2017
                July 14 2017
                : 357
                : 6347
                : 212-216
                Article
                10.1126/science.aam5339
                © 2017

                Comments

                Comment on this article