2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Haploinsufficiency of GCP4 induces autophagy and leads to photoreceptor degeneration due to defective spindle assembly in retina

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Retinopathy, owing to damage to the retina, often causes vision impairment, and the underlying molecular mechanisms are largely unknown. Using a gene targeting strategy, we generated mice with the essential gene Tubgcp4 knocked out. Homozygous mutation of Tubgcp4 resulted in early embryonic lethality due to abnormal spindle assembly caused by GCP4 (gamma-tubulin complex protein 4, encoded by Tubgcp4) depletion. Heterozygotes were viable through dosage compensation of one wild-type allele. However, haploinsufficiency of GCP4 affected the assembly of γ-TuRCs (γ-tubulin ring complexes) and disrupted autophagy homeostasis in retina, thus leading to photoreceptor degeneration and retinopathy. Notably, GCP4 exerted autophagy inhibition by competing with ATG3 for interaction with ATG7, thus interfering with lipidation of LC3B. Our findings justify dosage effects of essential genes that compensate for null alleles in viability of mutant mice and uncover dosage-dependent roles of GCP4 in embryo development and retinal homeostasis. These data have also clinical implications in genetic counseling on embryonic lethality and in development of potential therapeutic targets associated with retinopathy.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes.

          We noted an unexpected inheritance pattern of lesions in several strains of gene-manipulated mice with ocular phenotypes. The lesions, which appeared at various stages of backcross to C57BL/6, bore resemblance to the rd8 retinal degeneration phenotype. We set out to examine the prevalence of this mutation in induced mutant mouse lines, vendor C57BL/6 mice and in widely used embryonic stem cells. Ocular lesions were evaluated by fundus examination and histopathology. Detection of the rd8 mutation at the genetic level was performed by PCR with appropriate primers. Data were confirmed by DNA sequencing in selected cases. Analysis of several induced mutant mouse lines with ocular disease phenotypes revealed that the disease was associated 100% with the presence of the rd8 mutation in the Crb1 gene rather than with the gene of interest. DNA analysis of C57BL/6 mice from common commercial vendors demonstrated the presence of the rd8 mutation in homozygous form in all C57BL/6N substrains, but not in the C57BL/6J substrain. A series of commercially available embryonic stem cells of C57BL/6N origin and C57BL/6N mouse lines used to generate ES cells also contained the rd8 mutation. Affected mice displayed ocular lesions typical of rd8, which were detectable by funduscopy and histopathology as early as 6 weeks of age. These findings identify the presence of the rd8 mutation in the C57BL/6N mouse substrain used widely to produce transgenic and knockout mice. The results have grave implications for the vision research community who develop mouse lines to study eye disease, as presence of rd8 can produce significant disease phenotypes unrelated to the gene or genes of interest. It is suggested that researchers screen for rd8 if their mouse lines were generated on the C57BL/6N background, bear resemblance to the rd8 phenotype, or are of indeterminate origin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Highly parallel identification of essential genes in cancer cells.

            More complete knowledge of the molecular mechanisms underlying cancer will improve prevention, diagnosis and treatment. Efforts such as The Cancer Genome Atlas are systematically characterizing the structural basis of cancer, by identifying the genomic mutations associated with each cancer type. A powerful complementary approach is to systematically characterize the functional basis of cancer, by identifying the genes essential for growth and related phenotypes in different cancer cells. Such information would be particularly valuable for identifying potential drug targets. Here, we report the development of an efficient, robust approach to perform genome-scale pooled shRNA screens for both positive and negative selection and its application to systematically identify cell essential genes in 12 cancer cell lines. By integrating these functional data with comprehensive genetic analyses of primary human tumors, we identified known and putative oncogenes such as EGFR, KRAS, MYC, BCR-ABL, MYB, CRKL, and CDK4 that are essential for cancer cell proliferation and also altered in human cancers. We further used this approach to identify genes involved in the response of cancer cells to tumoricidal agents and found 4 genes required for the response of CML cells to imatinib treatment: PTPN1, NF1, SMARCB1, and SMARCE1, and 5 regulators of the response to FAS activation, FAS, FADD, CASP8, ARID1A and CBX1. Broad application of this highly parallel genetic screening strategy will not only facilitate the rapid identification of genes that drive the malignant state and its response to therapeutics but will also enable the discovery of genes that participate in any biological process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Noncanonical autophagy promotes the visual cycle.

              Phagocytosis and degradation of photoreceptor outer segments (POS) by retinal pigment epithelium (RPE) is fundamental to vision. Autophagy is also responsible for bulk degradation of cellular components, but its role in POS degradation is not well understood. We report that the morning burst of RPE phagocytosis coincided with the enzymatic conversion of autophagy protein LC3 to its lipidated form. LC3 associated with single-membrane phagosomes containing engulfed POS in an Atg5-dependent manner that required Beclin1, but not the autophagy preinitiation complex. The importance of this process was verified in mice with Atg5-deficient RPE cells that showed evidence of disrupted lysosomal processing. These mice also exhibited decreased photoreceptor responses to light stimuli and decreased chromophore levels that were restored with exogenous retinoid supplementation. These results establish that the interplay of phagocytosis and autophagy within the RPE is required for both POS degradation and the maintenance of retinoid levels to support vision. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                hhcheng@whu.edu.cn
                rjzhou@whu.edu.cn
                Journal
                Cell Death Differ
                Cell Death Differ
                Cell Death and Differentiation
                Nature Publishing Group UK (London )
                1350-9047
                1476-5403
                17 June 2019
                17 June 2019
                February 2020
                : 27
                : 2
                : 556-572
                Affiliations
                [1 ]ISNI 0000 0001 2331 6153, GRID grid.49470.3e, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, , Wuhan University, ; Wuhan, 430072 China
                [2 ]ISNI 0000 0001 0348 3990, GRID grid.268099.c, State Key Laboratory of Opthalmology, Optometry and Vision Science, , Wenzhou Medical University, ; Wenzhou, 325003 China
                Author information
                http://orcid.org/0000-0002-9701-8009
                Article
                371
                10.1038/s41418-019-0371-0
                7206048
                31209365
                02300afd-137c-43dc-90bb-61e53d9ebb58
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 28 May 2018
                : 3 June 2019
                : 4 June 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100001809, National Natural Science Foundation of China (National Science Foundation of China);
                Award ID: 31771487
                Award ID: 31771370
                Award ID: 31571280
                Award Recipient :
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2020

                Cell biology
                macroautophagy,gene expression
                Cell biology
                macroautophagy, gene expression

                Comments

                Comment on this article