14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Necromass as a Limited Source of Energy for Microorganisms in Marine Sediments

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Global distribution of microbial abundance and biomass in subseafloor sediment.

          The global geographic distribution of subseafloor sedimentary microbes and the cause(s) of that distribution are largely unexplored. Here, we show that total microbial cell abundance in subseafloor sediment varies between sites by ca. five orders of magnitude. This variation is strongly correlated with mean sedimentation rate and distance from land. Based on these correlations, we estimate global subseafloor sedimentary microbial abundance to be 2.9⋅10(29) cells [corresponding to 4.1 petagram (Pg) C and ∼0.6% of Earth's total living biomass]. This estimate of subseafloor sedimentary microbial abundance is roughly equal to previous estimates of total microbial abundance in seawater and total microbial abundance in soil. It is much lower than previous estimates of subseafloor sedimentary microbial abundance. In consequence, we estimate Earth's total number of microbes and total living biomass to be, respectively, 50-78% and 10-45% lower than previous estimates.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000°C

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial life under extreme energy limitation.

              A great number of the bacteria and archaea on Earth are found in subsurface environments in a physiological state that is poorly represented or explained by laboratory cultures. Microbial cells in these very stable and oligotrophic settings catabolize 10⁴- to 10⁶-fold more slowly than model organisms in nutrient-rich cultures, turn over biomass on timescales of centuries to millennia rather than hours to days, and subsist with energy fluxes that are 1,000-fold lower than the typical culture-based estimates of maintenance requirements. To reconcile this disparate state of being with our knowledge of microbial physiology will require a revised understanding of microbial energy requirements, including identifying the factors that comprise true basal maintenance and the adaptations that might serve to minimize these factors.
                Bookmark

                Author and article information

                Journal
                Journal of Geophysical Research: Biogeosciences
                J. Geophys. Res. Biogeosci.
                Wiley
                21698953
                February 2018
                February 2018
                February 24 2018
                : 123
                : 2
                : 577-590
                Affiliations
                [1 ]Department of Earth Sciences; University of Southern California; Los Angeles CA USA
                [2 ]Department of Biological Sciences; University of Southern California; Los Angeles CA USA
                Article
                10.1002/2017JG004186
                023aa420-8001-42c3-8955-0d0d0882d656
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article