17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Hydrophilic Hierarchical Nitrogen-Doped Carbon Nanocages for Ultrahigh Supercapacitive Performance

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The synergism of large surface area, multiscale porous structure, and good conductivity endows hierarchical carbon nanocages with high-level supercapacitive performances. Further nitrogen doping greatly improves the hydrophilicity, which boosts the supercapacitive performances to an ultrahigh specific capacitance of up to 313 F g(-1) at 1 A g(-1).

          Related collections

          Most cited references33

          • Record: found
          • Abstract: not found
          • Article: not found

          Materials science. Where do batteries end and supercapacitors begin?

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Laser scribing of high-performance and flexible graphene-based electrochemical capacitors.

            Although electrochemical capacitors (ECs), also known as supercapacitors or ultracapacitors, charge and discharge faster than batteries, they are still limited by low energy densities and slow rate capabilities. We used a standard LightScribe DVD optical drive to do the direct laser reduction of graphite oxide films to graphene. The produced films are mechanically robust, show high electrical conductivity (1738 siemens per meter) and specific surface area (1520 square meters per gram), and can thus be used directly as EC electrodes without the need for binders or current collectors, as is the case for conventional ECs. Devices made with these electrodes exhibit ultrahigh energy density values in different electrolytes while maintaining the high power density and excellent cycle stability of ECs. Moreover, these ECs maintain excellent electrochemical attributes under high mechanical stress and thus hold promise for high-power, flexible electronics.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Advanced materials for energy storage.

              Popularization of portable electronics and electric vehicles worldwide stimulates the development of energy storage devices, such as batteries and supercapacitors, toward higher power density and energy density, which significantly depends upon the advancement of new materials used in these devices. Moreover, energy storage materials play a key role in efficient, clean, and versatile use of energy, and are crucial for the exploitation of renewable energy. Therefore, energy storage materials cover a wide range of materials and have been receiving intensive attention from research and development to industrialization. In this Review, firstly a general introduction is given to several typical energy storage systems, including thermal, mechanical, electromagnetic, hydrogen, and electrochemical energy storage. Then the current status of high-performance hydrogen storage materials for on-board applications and electrochemical energy storage materials for lithium-ion batteries and supercapacitors is introduced in detail. The strategies for developing these advanced energy storage materials, including nanostructuring, nano-/microcombination, hybridization, pore-structure control, configuration design, surface modification, and composition optimization, are discussed. Finally, the future trends and prospects in the development of advanced energy storage materials are highlighted.
                Bookmark

                Author and article information

                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                09359648
                June 2015
                June 30 2015
                : 27
                : 23
                : 3541-3545
                Article
                10.1002/adma.201500945
                25931030
                023d6ca1-2704-4057-9f28-84db5384147e
                © 2015

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article