5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effects of prostaglandin E2 on amiloride-blockable Na+ channels in a distal nephron cell line (A6).

      The American journal of physiology
      Adenylate Cyclase, metabolism, Amiloride, pharmacology, Animals, Cell Line, Cell Membrane, Cyclic AMP, Dinoprostone, GTP-Binding Proteins, physiology, Inositol 1,4,5-Trisphosphate, Intracellular Membranes, Nephrons, cytology, Pertussis Toxin, Protein Kinase C, Sodium Channel Blockers, Sodium Channels, drug effects, Virulence Factors, Bordetella

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We studied the mechanisms by which prostaglandin E2 (PGE2) regulates amiloride-blockable 4-pS Na+ channels in A6 distal nephron cells. With each apical cell-attached patch acting as its own control, acute (3-6 min) basolateral, but not apical, exposure to 1 microM PGE2 inhibited Na+ channel activity by decreasing the open probability (Po). This PGE2-induced inhibition was attenuated by 30 min pretreatment with the protein kinase C (PKC) antagonists 1 microM staurosporine or 100 microM D-sphingosine but was insensitive to pertussis toxin (PTX). Furthermore, the time course for channel inhibition by acute PGE2 correlated with a transient increase in intracellular inositol 1,4,5-trisphosphate (IP3) levels. In contrast, after chronic (10-50 min) exposure of A6 cells to 1 microM basolateral PGE2, channel activity was stimulated compared with controls. This stimulation was due to an increase in the number of apical Na+ channels, similar to the effect of maneuvers that increase intracellular adenosine 3',5'-cyclic monophosphate (cAMP) levels in A6 cells (22). Indeed, chronic exposure to basolateral PGE2 correlated with a sustained increase in cAMP levels. In conclusion, 1) the regulation of apical 4-pS highly selective Na+ channel activity by basolateral PGE2 is a complicated biphasic process, which includes inhibition by acute PGE2 and stimulation by chronic PGE2 exposure; 2) acute PGE2 promotes a transient generation of IP3 which activates Ca(2+)-dependent PKC and promotes a decrease in Po; 3) chronic PGE2 promotes a sustained generation of cAMP that leads to an increase in channel density; and 4) both the acute and chronic effects of PGE2 on Na+ channels are PTX-insensitive processes.

          Related collections

          Author and article information

          Comments

          Comment on this article