2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regulation of tyrosinase in human melanocytes grown in culture

      research-article
      The Journal of Cell Biology
      The Rockefeller University Press

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tyrosinase, the enzyme that controls the synthesis of melanin, is a unique product of melanocytes. Normal and malignant human melanocytes grown in culture were used to study the factors that regulate the expression of tyrosinase. Immunoprecipitation experiments showed that newly synthesized tyrosinase appeared as a protein with an apparent molecular weight of 70,000 that was processed to a protein with an apparent molecular weight of 80,000. Neither tunicamycin nor 2-deoxy-D- glucose inhibited this conversion, suggesting that O-glycosylation is the major biochemical event in the posttranslational modification of tyrosinase. Agents that stimulated the proliferation of normal melanocytes also stimulated tyrosinase activity. Melanocytes with low levels of tyrosinase activity synthesized less tyrosinase, processed the enzyme more slowly, and degraded it more rapidly than melanocytes with high levels of tyrosinase activity. We conclude that tyrosinase activity in cultures of human melanocytes derived from different donors is determined predominantly by its abundance.

          Related collections

          Author and article information

          Journal
          J Cell Biol
          The Journal of Cell Biology
          The Rockefeller University Press
          0021-9525
          1540-8140
          1 August 1983
          : 97
          : 2
          : 480-488
          Article
          83291262
          2112541
          6411733
          0250cf60-4430-4490-8faa-1b0590a7504b
          History
          Categories
          Articles

          Cell biology
          Cell biology

          Comments

          Comment on this article