36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An Ovol2-Zeb1 Mutual Inhibitory Circuit Governs Bidirectional and Multi-step Transition between Epithelial and Mesenchymal States

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reversible epithelial-to-mesenchymal transition (EMT) is central to tissue development, epithelial stemness, and cancer metastasis. While many regulatory elements have been identified to induce EMT, the complex process underlying such cellular plasticity remains poorly understood. Utilizing a systems biology approach integrating modeling and experiments, we found multiple intermediate states contributing to EMT and that the robustness of the transitions is modulated by transcriptional factor Ovol2. In particular, we obtained evidence for a mutual inhibition relationship between Ovol2 and EMT inducer Zeb1, and observed that adding this regulation generates a novel four-state system consisting of two distinct intermediate phenotypes that differ in differentiation propensities and are favored in different environmental conditions. We identified epithelial cells that naturally exist in an intermediate state with bidirectional differentiation potential, and found the balance between EMT-promoting and -inhibiting factors to be critical in achieving and selecting between intermediate states. Our analysis suggests a new design principle in controlling cellular plasticity through multiple intermediate cell fates and underscores the critical involvement of Ovol2 and its associated molecular regulations.

          Author Summary

          Cumulative evidence reveals remarkable lineage plasticity of somatic cells. Epithelial-to-mesenchymal transition (EMT) represents a prime example of such plasticity where an epithelial cell is converted into a mesenchymal cell. This process is used in normal development to generate crucial cell types, and is hijacked by cancer cells for invasion and metastasis. Recent studies also suggest the importance of EMT in generating stem cell properties. The reversibility of EMT and its sensitivity to varying environmental stimuli pose interesting challenges to understand the intricate regulatory networks that direct cellular state transitions and their dynamics. Here we use a systems biology approach to probe into the complexity of the EMT process. We report a new molecular regulation that expands the known regulatory network, and show that this new network is capable of generating multiple intermediate states, which we provide experimental evidence for. We present modeling and experimental results to highlight the significance of a delicate balance between EMT-promoting and -inhibiting factors for achieving and/or selecting an intermediate state, and to suggest the biological significance of the multiple intermediate states. This work further elucidates the complex strategies that control epithelial cell behavior and cancer/stem cell plasticity.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptome-wide noise controls lineage choice in mammalian progenitor cells.

            Phenotypic cell-to-cell variability within clonal populations may be a manifestation of 'gene expression noise', or it may reflect stable phenotypic variants. Such 'non-genetic cell individuality' can arise from the slow fluctuations of protein levels in mammalian cells. These fluctuations produce persistent cell individuality, thereby rendering a clonal population heterogeneous. However, it remains unknown whether this heterogeneity may account for the stochasticity of cell fate decisions in stem cells. Here we show that in clonal populations of mouse haematopoietic progenitor cells, spontaneous 'outlier' cells with either extremely high or low expression levels of the stem cell marker Sca-1 (also known as Ly6a; ref. 9) reconstitute the parental distribution of Sca-1 but do so only after more than one week. This slow relaxation is described by a gaussian mixture model that incorporates noise-driven transitions between discrete subpopulations, suggesting hidden multi-stability within one cell type. Despite clonality, the Sca-1 outliers had distinct transcriptomes. Although their unique gene expression profiles eventually reverted to that of the median cells, revealing an attractor state, they lasted long enough to confer a greatly different proclivity for choosing either the erythroid or the myeloid lineage. Preference in lineage choice was associated with increased expression of lineage-specific transcription factors, such as a >200-fold increase in Gata1 (ref. 10) among the erythroid-prone cells, or a >15-fold increased PU.1 (Sfpi1) (ref. 11) expression among myeloid-prone cells. Thus, clonal heterogeneity of gene expression level is not due to independent noise in the expression of individual genes, but reflects metastable states of a slowly fluctuating transcriptome that is distinct in individual cells and may govern the reversible, stochastic priming of multipotent progenitor cells in cell fate decision.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity.

              The recent discovery that normal and neoplastic epithelial cells re-enter the stem cell state raised the intriguing possibility that the aggressiveness of carcinomas derives not from their existing content of cancer stem cells (CSCs) but from their proclivity to generate new CSCs from non-CSC populations. Here, we demonstrate that non-CSCs of human basal breast cancers are plastic cell populations that readily switch from a non-CSC to CSC state. The observed cell plasticity is dependent on ZEB1, a key regulator of the epithelial-mesenchymal transition. We find that plastic non-CSCs maintain the ZEB1 promoter in a bivalent chromatin configuration, enabling them to respond readily to microenvironmental signals, such as TGFβ. In response, the ZEB1 promoter converts from a bivalent to active chromatin configuration, ZEB1 transcription increases, and non-CSCs subsequently enter the CSC state. Our findings support a dynamic model in which interconversions between low and high tumorigenic states occur frequently, thereby increasing tumorigenic and malignant potential. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, CA USA )
                1553-734X
                1553-7358
                10 November 2015
                November 2015
                : 11
                : 11
                : e1004569
                Affiliations
                [1 ]Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
                [2 ]Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
                [3 ]Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, United States of America
                Imperial College London, UNITED KINGDOM
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: TH KW QN XD. Performed the experiments: TH KW CHT AVP. Analyzed the data: TH KW CHT AVP. Wrote the paper: TH KW QN XD.

                Article
                PCOMPBIOL-D-15-00291
                10.1371/journal.pcbi.1004569
                4640575
                26554584
                02558b6e-dad0-4ddc-aebb-51211b01ce64
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 20 February 2015
                : 24 September 2015
                Page count
                Figures: 9, Tables: 1, Pages: 20
                Funding
                This work was funded by: National Institute of Health, http://nih.gov P50GM76516 (to QN); National Institute of Health, http://nih.gov R01GM107264 (to QN); and National Science Foundation, http://www.nsf.gov/ DMS1161621 (to QN, XD). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article