7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Piezoelectric Scaffolds as Smart Materials for Neural Tissue Engineering

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Injury to the central or peripheral nervous systems leads to the loss of cognitive and/or sensorimotor capabilities, which still lacks an effective treatment. Tissue engineering in the post-injury brain represents a promising option for cellular replacement and rescue, providing a cell scaffold for either transplanted or resident cells. Tissue engineering relies on scaffolds for supporting cell differentiation and growth with recent emphasis on stimuli responsive scaffolds, sometimes called smart scaffolds. One of the representatives of this material group is piezoelectric scaffolds, being able to generate electrical charges under mechanical stimulation, which creates a real prospect for using such scaffolds in non-invasive therapy of neural tissue. This paper summarizes the recent knowledge on piezoelectric materials used for tissue engineering, especially neural tissue engineering. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges, and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and serves as a starting point for novel research pathways in the most relevant and challenging open questions.

          Related collections

          Most cited references242

          • Record: found
          • Abstract: found
          • Article: not found

          Conductive polymers: towards a smart biomaterial for tissue engineering.

          Developing stimulus-responsive biomaterials with easy-to-tailor properties is a highly desired goal of the tissue engineering community. A novel type of electroactive biomaterial, the conductive polymer, promises to become one such material. Conductive polymers are already used in fuel cells, computer displays and microsurgical tools, and are now finding applications in the field of biomaterials. These versatile polymers can be synthesised alone, as hydrogels, combined into composites or electrospun into microfibres. They can be created to be biocompatible and biodegradable. Their physical properties can easily be optimized for a specific application through binding biologically important molecules into the polymer using one of the many available methods for their functionalization. Their conductive nature allows cells or tissue cultured upon them to be stimulated, the polymers' own physical properties to be influenced post-synthesis and the drugs bound in them released, through the application of an electrical signal. It is thus little wonder that these polymers are becoming very important materials for biosensors, neural implants, drug delivery devices and tissue engineering scaffolds. Focusing mainly on polypyrrole, polyaniline and poly(3,4-ethylenedioxythiophene), we review conductive polymers from the perspective of tissue engineering. The basic properties of conductive polymers, their chemical and electrochemical synthesis, the phenomena underlying their conductivity and the ways to tailor their properties (functionalization, composites, etc.) are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering.

            Efficacy of aligned poly(l-lactic acid) (PLLA) nano/micro fibrous scaffolds for neural tissue engineering is described and their performance with random PLLA scaffolds is compared as well in this study. Perfectly aligned PLLA fibrous scaffolds were fabricated by an electrospinning technique under optimum condition and the diameter of the electrospun fibers can easily be tailored by adjusting the concentration of polymer solution. As the structure of PLLA scaffold was intended for neural tissue engineering, its suitability was evaluated in vitro using neural stem cells (NSCs) as a model cell line. Cell morphology, differentiation and neurite outgrowth were studied by various microscopic techniques. The results show that the direction of NSC elongation and its neurite outgrowth is parallel to the direction of PLLA fibers for aligned scaffolds. No significant changes were observed on the cell orientation with respect to the fiber diameters. However, the rate of NSC differentiation was higher for PLLA nanofibers than that of micro fibers and it was independent of the fiber alignment. Based on the experimental results, the aligned nanofibrous PLLA scaffold could be used as a potential cell carrier in neural tissue engineering.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Porous chitosan scaffolds for tissue engineering.

              The wide array of tissue engineering applications exacerbates the need for biodegradable materials with broad potential. Chitosan, the partially deacetylated derivative of chitin, may be one such material. In this study, we examined the use of chitosan for formation of porous scaffolds of controlled microstructure in several tissue-relevant geometries. Porous chitosan materials were prepared by controlled freezing and lyophilization of chitosan solutions and gels. The materials were characterized via light and scanning electron microscopy as well as tensile testing. The scaffolds formed included porous membranes, blocks, tubes and beads. Mean pore diameters could be controlled within the range 1-250 microm, by varying the freezing conditions. Freshly lyophilized chitosan scaffolds could be treated with glycosaminoglycans to form ionic complex materials which retained the original pore structure. Chitosan scaffolds could be rehydrated via an ethanol series to avoid the stiffening caused by rehydration in basic solutions. Hydrated porous chitosan membranes were at least twice as extensible as non-porous chitosan membranes, but their elastic moduli and tensile strengths were about tenfold lower than non-porous controls. The methods and structures described here provide a starting point for the design and fabrication of a family of polysaccharide based scaffold materials with potentially broad applicability.
                Bookmark

                Author and article information

                Journal
                Polymers (Basel)
                Polymers (Basel)
                polymers
                Polymers
                MDPI
                2073-4360
                08 January 2020
                January 2020
                : 12
                : 1
                : 161
                Affiliations
                Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5b St., 02-106 Warsaw, Poland; psajk@ 123456ippt.pan.pl (P.S.); argrad@ 123456ippt.pan.pl (A.G.)
                Author notes
                [* ]Correspondence: azasz@ 123456ippt.pan.pl
                Author information
                https://orcid.org/0000-0003-3571-1438
                https://orcid.org/0000-0003-4092-9853
                Article
                polymers-12-00161
                10.3390/polym12010161
                7022784
                31936240
                0255d19a-b628-4d97-af94-e3bc1ef99935
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 November 2019
                : 05 January 2020
                Categories
                Review

                neural tissue engineering,piezoelectric scaffolds,smart materials,polymers

                Comments

                Comment on this article