62
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Perinatal BPA Exposure Induces Hyperglycemia, Oxidative Stress and Decreased Adiponectin Production in Later Life of Male Rat Offspring

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The main object of the present study was to explore the effect of perinatal bisphenol A (BPA) exposure on glucose metabolism in early and later life of male rat offspring, and to establish the potential mechanism of BPA-induced dysglycemia. Pregnant rats were treated with either vehicle or BPA by drinking water at concentrations of 1 and 10 µg/mL BPA from gestation day 6 through the end of lactation. We measured the levels of fasting serum glucose, insulin, adiponectin and parameters of oxidative stress on postnatal day (PND) 50 and PND100 in male offspring, and adiponectin mRNA and protein expression in adipose tissue were also examined. Our results showed that perinatal exposure to 1 or 10 µg/mL BPA induced hyperglycemia with insulin resistance on PND100, but only 10 µg/mL BPA exposure had similar effects as early as PND50. In addition, increased oxidative stress and decreased adiponectin production were also observed in BPA exposed male offspring. Our findings indicated that perinatal exposure to BPA resulted in abnormal glucose metabolism in later life of male offspring, with an earlier and more exacerbated effect at higher doses. Down-regulated expression of adiponectin gene and increased oxidative stress induced by BPA may be associated with insulin resistance.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Urinary bisphenol A and obesity: NHANES 2003-2006.

          Bisphenol A (BPA) is a chemical suspected of causing endocrine and metabolic disruption in animals and humans. In rodents, in utero exposure to low-dose BPA is associated with weight gain. Detectable levels of BPA are found in most Americans due to its widespread use in the manufacture of food and drink packaging. We hypothesized that urinary BPA concentrations would be positively associated with general and central obesity. Cross-sectional analysis of urinary BPA concentrations, body mass index, and waist circumference in 2747 adults (aged 18-74), using pooled data from the 2003/04 and 2005/06 National Health and Nutrition Examination Surveys. The creatinine-adjusted geometric mean urinary BPA concentration was 2.05μg/g creatinine (25th percentile: 1.18, 75% percentile: 3.33). Relative to those in the lowest BPA quartile, participants in the upper BPA quartiles were more likely to be classified as obese (quartile 2 odds ratio (OR): 1.85, 95% confidence interval (CI): 1.22, 2.79; quartile 3 OR: 1.60, 95% CI: 1.05-2.44; quartile 4 OR: 1.76, 95% CI: 1.06-2.94). Higher BPA concentration was also associated with abdominal obesity (quartile 2 OR: 1.62, 95% CI: 1.11, 2.36; quartile 3 OR: 1.39, 95% CI: 1.02-1.90; quartile 4 OR: 1.58, 95% CI: 1.03-2.42). Higher BPA exposure is associated with general and central obesity in the general adult population of the United States. Reverse causation is of concern due to the cross-sectional nature of this study; longitudinal studies are needed to clarify the direction of the association. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Bisphenol A Induces Hepatotoxicity through Oxidative Stress in Rat Model

            Reactive oxygen species (ROS) are cytotoxic agents that lead to significant oxidative damage. Bisphenol A (BPA) is a contaminant with increasing exposure to it and exerts both toxic and estrogenic effects on mammalian cells. Due to limited information concerning the effect of BPA on liver, this study investigates whether BPA causes hepatotoxicity by induction of oxidative stress in liver. Rats were divided into five groups: The first four groups, BPA (0.1, 1, 10, 50 mg/kg/day) were administrated orally to rats for four weeks. The fifth group was taken water with vehicle. The final body weights in the 0.1 mg group showed a significant decrease compared to control group. Significant decreased levels of reduced glutathione, superoxide dismutase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase and catalase activity were found in the 50 mg BPA group compared to control groups. High dose of BPA (50 mg/kg) significantly increased the biochemical levels of ALT, ALP and total bilirubin. BPA effect on the activity of antioxidant genes was confirmed by real time PCR in which the expression levels of these genes in liver tissue were significantly decrease compared to control. Data from this study demonstrate that BPA generate ROS and reduce the antioxidant gene expression that causes hepatotoxicity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Prenatal and Postnatal Bisphenol A Exposure and Body Mass Index in Childhood in the CHAMACOS Cohort

              Background: Bisphenol A (BPA), a widely used endocrine-disrupting chemical, has been associated with increased body weight and fat deposition in rodents. Objectives: We examined whether prenatal and postnatal urinary BPA concentrations were associated with body mass index (BMI), waist circumference, percent body fat, and obesity in 9-year-old children (n = 311) in the CHAMACOS longitudinal cohort study. Methods: BPA was measured in spot urine samples collected from mothers twice during pregnancy and from children at 5 and 9 years of age. Results: Prenatal urinary BPA concentrations were associated with decreased BMI at 9 years of age in girls but not boys. Among girls, being in the highest tertile of prenatal BPA concentrations was associated with decreased BMI z-score (β = –0.47, 95% CI: –0.87, –0.07) and percent body fat (β = –4.36, 95% CI: –8.37, –0.34) and decreased odds of overweight/obesity [odds ratio (OR) = 0.37, 95% CI: 0.16, 0.91] compared with girls in the lowest tertile. These findings were strongest in prepubertal girls. Urinary BPA concentrations at 5 years of age were not associated with any anthropometric parameters at 5 or 9 years, but BPA concentrations at 9 years were positively associated with BMI, waist circumference, fat mass, and overweight/obesity at 9 years in boys and girls. Conclusions: Consistent with other cross-sectional studies, higher urinary BPA concentrations at 9 years of age were associated with increased adiposity at 9 years. However, increasing BPA concentrations in mothers during pregnancy were associated with decreased BMI, body fat, and overweight/obesity among their daughters at 9 years of age.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                03 April 2014
                April 2014
                : 11
                : 4
                : 3728-3742
                Affiliations
                Department of Child and Adolescent Health, School of Public Health, China Medical University, 92 North 2nd Road, Shenyang 110001, China; E-Mails: songsz_cmu@ 123456163.com (S.S.); zhangling_19880808@ 123456163.com (L.Z.); 13889305978@ 123456163.com (H.Z.); weiwei840403@ 123456163.com (W.W.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: lhjia@ 123456mail.cmu.edu.cn ; Tel.: +86-024-2325-6666 (ext. 5392); Fax: +86-024-2326-9025.
                Article
                ijerph-11-03728
                10.3390/ijerph110403728
                4025022
                24705360
                02651013-7959-485a-a301-9a41c6eee400
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 11 February 2014
                : 20 March 2014
                : 25 March 2014
                Categories
                Article

                Public health
                bisphenol a,glucose metabolism,adiponectin,oxidative stress,puberty stage,adult stage
                Public health
                bisphenol a, glucose metabolism, adiponectin, oxidative stress, puberty stage, adult stage

                Comments

                Comment on this article