41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development of a genetic sexing strain in Bactrocera carambolae (Diptera: Tephritidae) by introgression of sex sorting components from B. dorsalis, Salaya1 strain

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The carambola fruit fly, Bactrocera carambolae Drew & Hancock is a high profile key pest that is widely distributed in the southwestern ASEAN region. In addition, it has trans-continentally invaded Suriname, where it has been expanding east and southward since 1975. This fruit fly belongs to Bactrocera dorsalis species complex. The development and application of a genetic sexing strain (Salaya1) of B. dorsalis sensu stricto (s.s.) (Hendel) for the sterile insect technique (SIT) has improved the fruit fly control. However, matings between B. dorsalis s.s. and B. carambolae are incompatible, which hinder the application of the Salaya1 strain to control the carambola fruit fly. To solve this problem, we introduced genetic sexing components from the Salaya1 strain into the B. carambolae genome by interspecific hybridization.

          Results

          Morphological characteristics, mating competitiveness, male pheromone profiles, and genetic relationships revealed consistencies that helped to distinguish Salaya1 and B. carambolae strains. A Y-autosome translocation linking the dominant wild-type allele of white pupae gene and a free autosome carrying a recessive white pupae homologue from the Salaya1 strain were introgressed into the gene pool of B. carambolae. A panel of Y-pseudo-linked microsatellite loci of the Salaya1 strain served as markers for the introgression experiments. This resulted in a newly derived genetic sexing strain called Salaya5, with morphological characteristics corresponding to B. carambolae. The rectal gland pheromone profile of Salaya5 males also contained a distinctive component of B. carambolae. Microsatellite DNA analyses confirmed the close genetic relationships between the Salaya5 strain and wild B. carambolae populations. Further experiments showed that the sterile males of Salaya5 can compete with wild males for mating with wild females in field cage conditions.

          Conclusions

          Introgression of sex sorting components from the Salaya1 strain to a closely related B. carambolae strain generated a new genetic sexing strain, Salaya5. Morphology-based taxonomic characteristics, distinctive pheromone components, microsatellite DNA markers, genetic relationships, and mating competitiveness provided parental baseline data and validation tools for the new strain. The Salaya5 strain shows a close similarity with those features in the wild B. carambolae strain. In addition, mating competitiveness tests suggested that Salaya5 has a potential to be used in B. carambolae SIT programs based on male-only releases.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          Biogeography of the Indo-Australian Archipelago

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic control of mosquitoes.

            Genetics can potentially provide new, species-specific, environmentally friendly methods for mosquito control. Genetic control strategies aim either to suppress target populations or to introduce a harm-reducing novel trait. Different approaches differ considerably in their properties, especially between self-limiting strategies, where the modification has limited persistence, and self-sustaining strategies, which are intended to persist indefinitely in the target population and may invade other populations. Several methods with different molecular biology are under development and the first field trials have been completed successfully.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Female-specific insect lethality engineered using alternative splicing.

              The Sterile Insect Technique is a species-specific and environmentally friendly method of pest control involving mass release of sterilized insects that reduce the wild population through infertile matings. Insects carrying a female-specific autocidal genetic system offer an attractive alternative to conventional sterilization methods while also eliminating females from the release population. We exploited sex-specific alternative splicing in insects to engineer female-specific autocidal genetic systems in the Mediterranean fruit fly, Ceratitis capitata. These rely on the insertion of cassette exons from the C. capitata transformer gene into a heterologous tetracycline-repressible transactivator such that the transactivator transcript is disrupted in male splice variants but not in the female-specific one. As the key components of these systems function across a broad phylogenetic range, this strategy addresses the paucity of sex-specific expression systems (e.g., early-acting, female-specific promoters) in insects other than Drosophila melanogaster. The approach may have wide applicability for regulating gene expression in other organisms, particularly for combinatorial control with appropriate promoters.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Genet
                BMC Genet
                BMC Genetics
                BioMed Central
                1471-2156
                2014
                1 December 2014
                : 15
                : Suppl 2
                : S2
                Affiliations
                [1 ]Department of Biotechnology, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
                Article
                1471-2156-15-S2-S2
                10.1186/1471-2156-15-S2-S2
                4255791
                25471905
                02694247-e93f-41ba-9800-b31ab4c42602
                Copyright © 2014 Isasawin et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Research

                Genetics
                bactrocera carambolae,bactrocera dorsalis,genetic sexing strain,sterile insect technique,area-wide integrated pest management,interspecific mating,introgression,microsatellite dna,male pheromone

                Comments

                Comment on this article