4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      d-Cysteine-Induced Rapid Root Abscission in the Water Fern Azolla Pinnata: Implications for the Linkage between d-Amino Acid and Reactive Sulfur Species (RSS) in Plant Environmental Responses

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) have been proposed as universal signaling molecules in plant stress responses. There are a growing number of studies suggesting that hydrogen sulfide (H 2S) or Reactive Sulfur Species (RSS) are also involved in plant abiotic as well as biotic stress responses. However, it is still a matter of debate as to how plants utilize those RSS in their signaling cascades. Here, we demonstrate that d-cysteine is a novel candidate for bridging our gap in understanding. In the genus of the tiny water-floating fern Azolla, a rapid root abscission occurs in response to a wide variety of environmental stimuli as well as chemical inducers. We tested five H 2S chemical donors, Na 2S, GYY4137, 5a, 8l, and 8o, and found that 5a showed a significant abscission activity. Root abscission also occurred with the polysulfides Na 2S 2, Na 2S 3, and Na 2S 4. Rapid root abscission comparable to other known chemical inducers was observed in the presence of d-cysteine, whereas l-cysteine showed no effect. We suggest that d-cysteine is a physiologically relevant substrate to induce root abscission in the water fern Azolla.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Hydrogen sulfide and cell signaling.

          Hydrogen sulfide (H₂S) is a gaseous mediator synthesized from cysteine by cystathionine γ lyase (CSE) and other naturally occurring enzymes. Pharmacological experiments using H₂S donors and genetic experiments using CSE knockout mice suggest important roles for this vasodilator gas in the regulation of blood vessel caliber, cardiac response to ischemia/reperfusion injury, and inflammation. That H₂S inhibits cytochrome c oxidase and reduces cell energy production has been known for many decades, but more recently, a number of additional pharmacological targets for this gas have been identified. H₂S activates K(ATP) and transient receptor potential (TRP) channels but usually inhibits big conductance Ca²(+)-sensitive K(+) (BK(Ca)) channels, T-type calcium channels, and M-type calcium channels. H₂S may inhibit or activate NF-κB nuclear translocation while affecting the activity of numerous kinases including p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase (ERK), and Akt. These disparate effects may be secondary to the well-known reducing activity of H₂S and/or its ability to promote sulfhydration of protein cysteine moieties within the cell.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydrogen peroxide and nitric oxide as signalling molecules in plants.

            It is now clear that hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) function as signalling molecules in plants. A wide range of abiotic and biotic stresses results in H(2)O(2) generation, from a variety of sources. H(2)O(2) is removed from cells via a number of antioxidant mechanisms, both enzymatic and non-enzymatic. Both biotic and abiotic stresses can induce NO synthesis, but the biosynthetic origins of NO in plants have not yet been resolved. Cellular responses to H(2)O(2) and NO are complex, with considerable cross-talk between responses to several stimuli. In this review the potential roles of H(2)O(2) and NO during various stresses and the signalling pathways they activate are discussed. Key signalling components that might provide targets for enhancing crop production are also identified.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Fern genomes elucidate land plant evolution and cyanobacterial symbioses

              Ferns are the closest sister group to all seed plants, yet little is known about their genomes other than that they are generally colossal. Here, we report on the genomes of Azolla filiculoides and Salvinia cucullata (Salviniales) and present evidence for episodic whole-genome duplication in ferns—one at the base of ‘core leptosporangiates’ and one specific to Azolla. One fern-specific gene that we identified, recently shown to confer high insect resistance, seems to have been derived from bacteria through horizontal gene transfer. Azolla coexists in a unique symbiosis with N2-fixing cyanobacteria, and we demonstrate a clear pattern of cospeciation between the two partners. Furthermore, the Azolla genome lacks genes that are common to arbuscular mycorrhizal and root nodule symbioses, and we identify several putative transporter genes specific to Azolla–cyanobacterial symbiosis. These genomic resources will help in exploring the biotechnological potential of Azolla and address fundamental questions in the evolution of plant life.
                Bookmark

                Author and article information

                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                18 September 2019
                September 2019
                : 8
                : 9
                : 411
                Affiliations
                [1 ]Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
                [2 ]Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA; cohenm@ 123456sonoma.edu
                Author notes
                Author information
                https://orcid.org/0000-0001-5158-1325
                Article
                antioxidants-08-00411
                10.3390/antiox8090411
                6770369
                31540452
                0269e849-afc9-4a8b-b49b-9f236b542986
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 July 2019
                : 16 September 2019
                Categories
                Article

                abscission,azolla,d-amino acid,d-cysteine,h2s,polysulfide,stress response

                Comments

                Comment on this article