8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cancer Stem Cells: Acquisition, Characteristics, Therapeutic Implications, Targeting Strategies and Future Prospects

      ,
      Stem Cell Reviews and Reports
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references153

          • Record: found
          • Abstract: found
          • Article: not found

          Epithelial-mesenchymal transitions in development and disease.

          The epithelial to mesenchymal transition (EMT) plays crucial roles in the formation of the body plan and in the differentiation of multiple tissues and organs. EMT also contributes to tissue repair, but it can adversely cause organ fibrosis and promote carcinoma progression through a variety of mechanisms. EMT endows cells with migratory and invasive properties, induces stem cell properties, prevents apoptosis and senescence, and contributes to immunosuppression. Thus, the mesenchymal state is associated with the capacity of cells to migrate to distant organs and maintain stemness, allowing their subsequent differentiation into multiple cell types during development and the initiation of metastasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of pancreatic cancer stem cells.

            Emerging evidence has suggested that the capability of a tumor to grow and propagate is dependent on a small subset of cells within a tumor, termed cancer stem cells. Although data have been provided to support this theory in human blood, brain, and breast cancers, the identity of pancreatic cancer stem cells has not been determined. Using a xenograft model in which primary human pancreatic adenocarcinomas were grown in immunocompromised mice, we identified a highly tumorigenic subpopulation of pancreatic cancer cells expressing the cell surface markers CD44, CD24, and epithelial-specific antigen (ESA). Pancreatic cancer cells with the CD44(+)CD24(+)ESA(+) phenotype (0.2-0.8% of pancreatic cancer cells) had a 100-fold increased tumorigenic potential compared with nontumorigenic cancer cells, with 50% of animals injected with as few as 100 CD44(+)CD24(+)ESA(+) cells forming tumors that were histologically indistinguishable from the human tumors from which they originated. The enhanced ability of CD44(+)CD24(+)ESA(+) pancreatic cancer cells to form tumors was confirmed in an orthotopic pancreatic tail injection model. The CD44(+)CD24(+)ESA(+) pancreatic cancer cells showed the stem cell properties of self-renewal, the ability to produce differentiated progeny, and increased expression of the developmental signaling molecule sonic hedgehog. Identification of pancreatic cancer stem cells and further elucidation of the signaling pathways that regulate their growth and survival may provide novel therapeutic approaches to treat pancreatic cancer, which is notoriously resistant to standard chemotherapy and radiation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy.

              Tumorigenic breast cancer cells that express high levels of CD44 and low or undetectable levels of CD24 (CD44(>)/CD24(>/low)) may be resistant to chemotherapy and therefore responsible for cancer relapse. These tumorigenic cancer cells can be isolated from breast cancer biopsies and propagated as mammospheres in vitro. In this study, we aimed to test directly in human breast cancers the effect of conventional chemotherapy or lapatinib (an epidermal growth factor receptor [EGFR]/HER2 pathway inhibitor) on this tumorigenic CD44(>) and CD24(>/low) cell population. Paired breast cancer core biopsies were obtained from patients with primary breast cancer before and after 12 weeks of treatment with neoadjuvant chemotherapy (n = 31) or, for patients with HER2-positive tumors, before and after 6 weeks of treatment with the EGFR/HER2 inhibitor lapatinib (n = 21). Single-cell suspensions established from these biopsies were stained with antibodies against CD24, CD44, and lineage markers and analyzed by flow cytometry. The potential of cells from biopsy samples taken before and after treatment to form mammospheres in culture was compared. All statistical tests were two-sided. Chemotherapy treatment increased the percentage of CD44(>)/CD24(>/low) cells (mean at baseline vs 12 weeks, 4.7%, 95% confidence interval [CI] = 3.5% to 5.9%, vs 13.6%, 95% CI = 10.9% to 16.3%; P )/CD24(>/low) cells (mean at baseline vs 6 weeks, 10.0%, 95% CI = 7.2% to 12.8%, vs 7.5%, 95% CI = 4.1% to 10.9%) and a statistically non-significant decrease in MSFE (mean at baseline vs 6 weeks, 16.1%, 95% CI = 8.7% to 23.5%, vs 10.8%, 95% CI = 4.0% to 17.6%). These studies provide clinical evidence for a subpopulation of chemotherapy-resistant breast cancer-initiating cells. Lapatinib did not lead to an increase in these tumorigenic cells, and, in combination with conventional therapy, specific pathway inhibitors may provide a therapeutic strategy for eliminating these cells to decrease recurrence and improve long-term survival.
                Bookmark

                Author and article information

                Journal
                Stem Cell Reviews and Reports
                Stem Cell Rev and Rep
                Springer Science and Business Media LLC
                1550-8943
                1558-6804
                June 2019
                April 16 2019
                June 2019
                : 15
                : 3
                : 331-355
                Article
                10.1007/s12015-019-09887-2
                30993589
                027f4acb-68fe-4b2d-b173-cf7c361b5731
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article