+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Serum IL-1β and IL-17 levels in patients with COPD: associations with clinical parameters

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          COPD is a chronic airway inflammatory disease characterized mainly by neutrophil airway infiltrations. Interleukin (IL)-1β and IL-17 are the key mediators of neutrophilic airway inflammation in COPD. This study was undertaken to evaluate the serum IL-1β and IL-17 levels and associations between these two key mediators with clinical parameters in COPD patients. Serum samples were collected from 60 COPD subjects during the acute exacerbation of COPD, 60 subjects with stable COPD and 40 healthy control subjects. Commercial enzyme-linked immunosorbent assay kits were used to measure the serum IL-1β and IL-17 concentrations. The association between serum IL-1β and IL-17 with FEV 1% predicted, C-reactive protein, neutrophil percentage and smoking status (pack-years) was assessed in the COPD patients. We found that serum IL-1β and IL-17 levels in acute exacerbation of COPD subjects were significantly higher than that in stable COPD or control subjects and were positively correlated to serum C-reactive protein levels, neutrophil % and smoking status (pack-years) but negatively correlated with FEV 1% predicted in COPD patients. More importantly, serum IL-1β levels were markedly positively associated with serum IL-17 levels in patients with COPD ( P=0.741, P<0.001). In conclusion, elevated serum IL-1β and IL-17 levels may be used as a biomarker for indicating persistent neutrophilic airway inflammation and potential ongoing exacerbation of COPD.

          Related collections

          Most cited references 26

          • Record: found
          • Abstract: found
          • Article: not found

          Association between chronic obstructive pulmonary disease and systemic inflammation: a systematic review and a meta-analysis.

          Individuals with chronic obstructive pulmonary disease (COPD) are at increased risk of cardiovascular diseases, osteoporosis, and muscle wasting. Systemic inflammation may be involved in the pathogenesis of these disorders. A study was undertaken to determine whether systemic inflammation is present in stable COPD. A systematic review was conducted of studies which reported on the relationship between COPD, forced expiratory volume in 1 second (FEV(1)) or forced vital capacity (FVC), and levels of various systemic inflammatory markers: C-reactive protein (CRP), fibrinogen, leucocytes, tumour necrosis factor-alpha (TNF-alpha), and interleukins 6 and 8. Where possible the results were pooled together to produce a summary estimate using a random or fixed effects model. Fourteen original studies were identified. Overall, the standardised mean difference in the CRP level between COPD and control subjects was 0.53 units (95% confidence interval (CI) 0.34 to 0.72). The standardised mean difference in the fibrinogen level was 0.47 units (95% CI 0.29 to 0.65). Circulating leucocytes were also higher in COPD than in control subjects (standardised mean difference 0.44 units (95% CI 0.20 to 0.67)), as were serum TNF-alpha levels (standardised mean difference 0.59 units (95% CI 0.29 to 0.89)). Reduced lung function is associated with increased levels of systemic inflammatory markers which may have important pathophysiological and therapeutic implications for subjects with stable COPD.
            • Record: found
            • Abstract: found
            • Article: not found

            Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways.

            IL-17 is a recently discovered cytokine that can be released from activated human CD4+ T lymphocytes. This study assessed the proinflammatory effects of human (h) IL-17 in the airways. In vitro, hIL-17 increased the release of IL-8 in human bronchial epithelial and venous endothelial cells, in a time- and concentration-dependent fashion. This effect of hIL-17 was inhibited by cotreatment with an anti-hIL-17 Ab and was potentiated by hTNF-alpha. In addition, hIL-17 increased the expression of hIL-8 mRNA in bronchial epithelial cells. Conditioned medium from hIL-17-treated bronchial epithelial cells increased human neutrophil migration in vitro. This effect was blocked by an anti-hIL-8 Ab. In vivo, intratracheal instillation of hIL-17 selectively recruited neutrophils into rat airways. This recruitment of neutrophils into the airways was inhibited by an anti-hIL-17 Ab and accompanied by increased levels of rat macrophage inflammatory protein-2 (rMIP-2) in bronchoalveolar lavage (BAL) fluid. The BAL neutrophilia was also blocked by an anti-rMIP-2 Ab. The effect of hIL-17 on the release of hIL-8 and rMIP-2 was also inhibited by glucocorticoids, in vitro and in vivo, respectively. These data demonstrate that hIL-17 can specifically and selectively recruit neutrophils into the airways via the release of C-X-C chemokines from bronchial epithelial cells and suggest a novel mechanism linking the activation of T-lymphocytes to recruitment of neutrophils into the airways.
              • Record: found
              • Abstract: found
              • Article: not found

              T helper type 17-related cytokine expression is increased in the bronchial mucosa of stable chronic obstructive pulmonary disease patients.

              There are increased numbers of activated T lymphocytes in the bronchial mucosa of stable chronic obstructive pulmonary disease (COPD) patients. T helper type 17 (Th17) cells release interleukin (IL)-17 as their effector cytokine under the control of IL-22 and IL-23. Furthermore, Th17 numbers are increased in some chronic inflammatory conditions. To investigate the expression of interleukin (IL)-17A, IL-17F, IL-21, IL-22 and IL-23 and of retinoic orphan receptor RORC2, a marker of Th17 cells, in bronchial biopsies from patients with stable COPD of different severity compared with age-matched control subjects. The expression of IL-17A, IL-17F, IL-21, IL-22, IL-23 and RORC2 was measured in the bronchial mucosa using immunohistochemistry and/or quantitative polymerase chain reaction. The number of IL-22(+) and IL-23(+) immunoreactive cells is increased in the bronchial epithelium of stable COPD compared with control groups. In addition, the number of IL-17A(+) and IL-22(+) immunoreactive cells is increased in the bronchial submucosa of stable COPD compared with control non-smokers. In all smokers, with and without disease, and in patients with COPD alone, the number of IL-22(+) cells correlated significantly with the number of both CD4(+) and CD8(+) cells in the bronchial mucosa. RORC2 mRNA expression in the bronchial mucosa was not significantly different between smokers with normal lung function and COPD. Further, we report that endothelial cells express high levels of IL-17A and IL-22. Increased expression of the Th17-related cytokines IL-17A, IL-22 and IL-23 in COPD patients may reflect their involvement, and that of specific IL-17-producing cells, in driving the chronic inflammation seen in COPD.

                Author and article information

                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                24 April 2017
                : 12
                : 1247-1254
                [1 ]Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University
                [2 ]Department of Emergency, The First People’s Hospital of Changsha, Changsha, People’s Republic of China
                Author notes
                Correspondence: Qiong Chen, Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, 136 Xiangya Road, Changsha, Hunan 410008, People’s Republic of China, Email qiongch@
                © 2017 Zou et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research

                Respiratory medicine

                cigarette smoking, neutrophilic airway inflammation, exacerbation


                Comment on this article