5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A sub-canopy structure for simulating oil palm in the Community Land Model (CLM-Palm): phenology, allocation and yield

      , , , , , ,
      Geoscientific Model Development
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. In order to quantify the effects of forests to oil palm conversion occurring in the tropics on land–atmosphere carbon, water and energy fluxes, we develop a new perennial crop sub-model CLM-Palm for simulating a palm plant functional type (PFT) within the framework of the Community Land Model (CLM4.5). CLM-Palm is tested here on oil palm only but is meant of generic interest for other palm crops (e.g., coconut). The oil palm has monopodial morphology and sequential phenology of around 40 stacked phytomers, each carrying a large leaf and a fruit bunch, forming a multilayer canopy. A sub-canopy phenological and physiological parameterization is thus introduced so that each phytomer has its own prognostic leaf growth and fruit yield capacity but with shared stem and root components. Phenology and carbon and nitrogen allocation operate on the different phytomers in parallel but at unsynchronized steps, separated by a thermal period. An important phenological phase is identified for the oil palm – the storage growth period of bud and "spear" leaves which are photosynthetically inactive before expansion. Agricultural practices such as transplanting, fertilization and leaf pruning are represented. Parameters introduced for the oil palm were calibrated and validated with field measurements of leaf area index (LAI), yield and net primary production (NPP) from Sumatra, Indonesia. In calibration with a mature oil palm plantation, the cumulative yields from 2005 to 2014 matched notably well between simulation and observation (mean percentage error = 3 %). Simulated inter-annual dynamics of PFT-level and phytomer-level LAI were both within the range of field measurements. Validation from eight independent oil palm sites shows the ability of the model to adequately predict the average leaf growth and fruit yield across sites and sufficiently represent the significant nitrogen- and age-related site-to-site variability in NPP and yield. Results also indicate that seasonal dynamics of yield and remaining small-scale site-to-site variability of NPP are driven by processes not yet implemented in the model or reflected in the input data. The new sub-canopy structure and phenology and allocation functions in CLM-Palm allow exploring the effects of tropical land-use change, from natural ecosystems to oil palm plantations, on carbon, water and energy cycles and regional climate.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Old-growth forests as global carbon sinks.

          Old-growth forests remove carbon dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 x 10(8) hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 +/- 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon, will move back to the atmosphere if these forests are disturbed.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A continental phenology model for monitoring vegetation responses to interannual climatic variability

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models

                Bookmark

                Author and article information

                Journal
                Geoscientific Model Development
                Geosci. Model Dev.
                Copernicus GmbH
                1991-9603
                2015
                November 26 2015
                : 8
                : 11
                : 3785-3800
                Article
                10.5194/gmd-8-3785-2015
                0290852a-4c8a-4364-bd40-59a2b0595714
                © 2015

                https://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article