4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Machine learning applied to neuroimaging for diagnosis of adult classic Chiari malformation: role of the basion as a key morphometric indicator

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          OBJECTIVE

          The current diagnostic criterion for Chiari malformation Type I (CM-I), based on tonsillar herniation (TH), includes a diversity of patients with amygdalar descent that may be caused by a variety of factors. In contrast, patients presenting with an overcrowded posterior cranial fossa, a key characteristic of the disease, may remain misdiagnosed if they have little or no TH. The objective of the present study was to use machine-learning classification methods to identify morphometric measures that help discern patients with classic CM-I to improve diagnosis and treatment and provide insight into the etiology of the disease.

          METHODS

          Fifteen morphometric measurements of the posterior cranial fossa were performed on midsagittal T1-weighted MR images obtained in 195 adult patients diagnosed with CM. Seven different machine-learning classification methods were applied to images from 117 patients with classic CM-I and 50 controls matched by age and sex to identify the best classifiers discriminating the 2 cohorts with the minimum number of parameters. These classifiers were then tested using independent CM cohorts representing different entities of the disease.

          RESULTS

          Machine learning identified combinations of 2 and 3 morphometric measurements that were able to discern not only classic CM-I (with more than 5 mm TH) but also other entities such as classic CM-I with moderate TH and CM Type 1.5 (CM-1.5), with high accuracy (> 87%) and independent of the TH criterion. In contrast, lower accuracy was obtained in patients with CM Type 0. The distances from the lower aspect of the corpus callosum, pons, and fastigium to the foramen magnum and the basal and Wackenheim angles were identified as the most relevant morphometric traits to differentiate these patients. The stronger significance (p < 0.01) of the correlations with the clivus length, compared with the supraoccipital length, suggests that these 5 relevant traits would be affected more by the relative position of the basion than the opisthion.

          CONCLUSIONS

          Tonsillar herniation as a unique criterion is insufficient for radiographic diagnosis of CM-I, which can be improved by considering the basion position. The position of the basion was altered in different entities of CM, including classic CM-I, classic CM-I with moderate TH, and CM-1.5. The authors propose a predictive model based on 3 parameters, all related to the basion location, to discern classic CM-I with 90% accuracy and suggest considering the anterior alterations in the evaluation of surgical procedures and outcomes.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients.

          Chiari malformations are regarded as a pathological continuum of hindbrain maldevelopments characterized by downward herniation of the cerebellar tonsils. The Chiari I malformation (CMI) is defined as tonsillar herniation of at least 3 to 5 mm below the foramen magnum. Increased detection of CMI has emphasized the need for more information regarding the clinical features of the disorder. We examined a prospective cohort of 364 symptomatic patients. All patients underwent magnetic resonance imaging of the head and spine, and some were evaluated using CINE-magnetic resonance imaging and other neurodiagnostic tests. For 50 patients and 50 age- and gender-matched control subjects, the volume of the posterior cranial fossa was calculated by the Cavalieri method. The families of 21 patients participated in a study of familial aggregation. There were 275 female and 89 male patients. The age of onset was 24.9+/-15.8 years (mean +/- standard deviation), and 89 patients (24%) cited trauma as the precipitating event. Common associated problems included syringomyelia (65%), scoliosis (42%), and basilar invagination (12%). Forty-three patients (12%) reported positive family histories of CMI or syringomyelia. Pedigrees for 21 families showed patterns consistent with autosomal dominant or recessive inheritance. The clinical syndrome of CMI was found to consist of the following: 1) headaches, 2) pseudotumor-like episodes, 3) a Meniere's disease-like syndrome, 4) lower cranial nerve signs, and 5) spinal cord disturbances in the absence of syringomyelia. The most consistent magnetic resonance imaging findings were obliteration of the retrocerebellar cerebrospinal fluid spaces (364 patients), tonsillar herniation of at least 5 mm (332 patients), and varying degrees of cranial base dysplasia. Volumetric calculations for the posterior cranial fossa revealed a significant reduction of total volume (mean, 13.4 ml) and a 40% reduction of cerebrospinal fluid volume (mean, 10.8 ml), with normal brain volume. These data support accumulating evidence that CMI is a disorder of the para-axial mesoderm that is characterized by underdevelopment of the posterior cranial fossa and overcrowding of the normally developed hindbrain. Tonsillar herniation of less than 5 mm does not exclude the diagnosis. Clinical manifestations of CMI seem to be related to cerebrospinal fluid disturbances (which are responsible for headaches, pseudotumor-like episodes, endolymphatic hydrops, syringomyelia, and hydrocephalus) and direct compression of nervous tissue. The demonstration of familial aggregation suggests a genetic component of transmission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease

            The study of brain networks by resting-state functional magnetic resonance imaging (rs-fMRI) is a promising method for identifying patients with dementia from healthy controls (HC). Using graph theory, different aspects of the brain network can be efficiently characterized by calculating measures of integration and segregation. In this study, we combined a graph theoretical approach with advanced machine learning methods to study the brain network in 89 patients with mild cognitive impairment (MCI), 34 patients with Alzheimer's disease (AD), and 45 age-matched HC. The rs-fMRI connectivity matrix was constructed using a brain parcellation based on a 264 putative functional areas. Using the optimal features extracted from the graph measures, we were able to accurately classify three groups (i.e., HC, MCI, and AD) with accuracy of 88.4 %. We also investigated performance of our proposed method for a binary classification of a group (e.g., MCI) from two other groups (e.g., HC and AD). The classification accuracies for identifying HC from AD and MCI, AD from HC and MCI, and MCI from HC and AD, were 87.3, 97.5, and 72.0 %, respectively. In addition, results based on the parcellation of 264 regions were compared to that of the automated anatomical labeling atlas (AAL), consisted of 90 regions. The accuracy of classification of three groups using AAL was degraded to 83.2 %. Our results show that combining the graph measures with the machine learning approach, on the basis of the rs-fMRI connectivity analysis, may assist in diagnosis of AD and MCI.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Asymptomatic Chiari Type I malformations identified on magnetic resonance imaging.

              Chiari Type I malformation (CMI) is a congenital disorder recognized by caudal displacement of the cerebellar tonsils through the foramen magnum and into the cervical canal. Frequently, associated findings include abnormalities of nearby bony and neural elements as well as syringomyelia. Cerebellar tonsillar ectopia is generally considered pathological when greater than 5 mm below the foramen magnum. However, asymptomatic tonsillar ectopia is an increasingly recognized phenomenon, the significance of which is poorly understood. The authors retrospectively reviewed the records of all brain magnetic resonance (MR) images obtained at our hospital over a 43-month period in an attempt to ascertain the relative prevalence and MR imaging characteristics of asymptomatic CMIs. Of 22,591 patients who underwent MR imaging of the head and cervical spine, 175 were found to have CMIs with tonsillar herniation extending more than 5 mm below the foramen magnum. Of these, 25 (14%) were found to be clinically asymptomatic. The average extent of ectopia in this population was 11.4 +/- 4.86 mm, and was significantly associated with a smaller cisterna magna. Syringomyelia and osseous anomalies were found in only one asymptomatic patient. The authors suggest that the isolated finding of tonsillar herniation is of limited prognostic utility and must be considered in the context of all available clinical and radiographic data. Strategies for treating patients with asymptomatic CMIs are discussed.
                Bookmark

                Author and article information

                Journal
                Journal of Neurosurgery
                Journal of Neurosurgery Publishing Group (JNSPG)
                0022-3085
                1933-0693
                September 2018
                September 2018
                : 779-791
                Article
                10.3171/2017.3.JNS162479
                29053075
                029541f1-b66a-4659-8425-bf067f9f2bc8
                © 2018
                History

                Comments

                Comment on this article