30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phylogenomics of species from four genera of New World monkeys by flow sorting and reciprocal chromosome painting

      research-article
      1 , 2 , 1 , , 3 , 2
      BMC Evolutionary Biology
      BioMed Central|1
      Second Congress of Italian Evolutionary Biologists (First Congress of the Italian Society for Evolutionary Biology)
      4–7 September 2006

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The taxonomic and phylogenetic relationships of New World monkeys (Platyrrhini) are difficult to distinguish on the basis of morphology and because diagnostic fossils are rare. Recently, molecular data have led to a radical revision of the traditional taxonomy and phylogeny of these primates. Here we examine new hypotheses of platyrrhine evolutionary relationships by reciprocal chromosome painting after chromosome flow sorting of species belonging to four genera of platyrrhines included in the Cebidae family: Callithrix argentata (silvered-marmoset), Cebuella pygmaea (pygmy marmoset), Callimico goeldii (Goeldi's marmoset) and Saimiri sciureus (squirrel monkey). This is the first report of reciprocal painting in marmosets.

          Results

          The paints made from chromosome flow sorting of the four platyrrhine monkeys provided from 42 to 45 hybridization signals on human metaphases. The reciprocal painting of monkey probes on human chromosomes revealed that 21 breakpoints are common to all four studied species. There are only three additional breakpoints. A breakpoint on human chromosome 13 was found in Callithrix argentata, Cebuella pygmaea and Callimico goeldii, but not in Saimiri sciureus. There are two additional breakpoints on human chromosome 5: one is specific to squirrel monkeys, and the other to Goeldi's marmoset.

          Conclusion

          The reciprocal painting results support the molecular genomic assemblage of Cebidae. We demonstrated that the five chromosome associations previously hypothesized to phylogenetically link tamarins and marmosets are homologous and represent derived chromosome rearrangements. Four of these derived homologous associations tightly nest Callimico goeldii with marmosets. One derived association 2/15 may place squirrel monkeys within the Cebidae assemblage. An apparently common breakpoint on chromosome 5q33 found in both Saimiri and Aotus nancymae could be evidence of a phylogenetic link between these species. Comparison with previous reports shows that many syntenic associations found in platyrrhines have the same breakpoints and are homologous, derived rearrangements showing that the New World monkeys are a closely related group of species. Our data support the hypothesis that the ancestral karyotype of the Platyrrhini has a diploid number of 2n = 54 and is almost identical to that found today in capuchin monkeys; congruent with a basal position of the Cebidae among platyrrhine families.

          Related collections

          Most cited references78

          • Record: found
          • Abstract: found
          • Article: not found

          Resolution of the early placental mammal radiation using Bayesian phylogenetics.

          Molecular phylogenetic studies have resolved placental mammals into four major groups, but have not established the full hierarchy of interordinal relationships, including the position of the root. The latter is critical for understanding the early biogeographic history of placentals. We investigated placental phylogeny using Bayesian and maximum-likelihood methods and a 16.4-kilobase molecular data set. Interordinal relationships are almost entirely resolved. The basal split is between Afrotheria and other placentals, at about 103 million years, and may be accounted for by the separation of South America and Africa in the Cretaceous. Crown-group Eutheria may have their most recent common ancestry in the Southern Hemisphere (Gondwana).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Placental mammal diversification and the Cretaceous-Tertiary boundary.

            Competing hypotheses for the timing of the placental mammal radiation focus on whether extant placental orders originated and diversified before or after the Cretaceous-Tertiary (KT) boundary. Molecular studies that have addressed this issue suffer from single calibration points, unwarranted assumptions about the molecular clock, andor taxon sampling that lacks representatives of all placental orders. We investigated this problem using the largest available molecular data set for placental mammals, which includes segments of 19 nuclear and three mitochondrial genes for representatives of all extant placental orders. We used the ThorneKishino method, which permits simultaneous constraints from the fossil record and allows rates of molecular evolution to vary on different branches of a phylogenetic tree. Analyses that used different sets of fossil constraints, different priors for the base of Placentalia, and different data partitions all support interordinal divergences in the Cretaceous followed by intraordinal diversification mostly after the KT boundary. Four placental orders show intraordinal diversification that predates the KT boundary, but only by an average of 10 million years. In contrast to some molecular studies that date the rat-mouse split as old as 46 million years, our results show improved agreement with the fossil record and place this split at 16-23 million years. To test the hypothesis that molecular estimates of Cretaceous divergence times are an artifact of increased body size subsequent to the KT boundary, we also performed analyses with a "KT body size" taxon set. In these analyses, interordinal splits remained in the Cretaceous.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimation of divergence times for major lineages of primate species.

              G Glazko (2003)
              Although the phylogenetic relationships of major lineages of primate species are relatively well established, the times of divergence of these lineages as estimated by molecular data are still controversial. This controversy has been generated in part because different authors have used different types of molecular data, different statistical methods, and different calibration points. We have therefore examined the effects of these factors on the estimates of divergence times and reached the following conclusions: (1) It is advisable to concatenate many gene sequences and use a multigene gamma distance for estimating divergence times rather than using the individual gene approach. (2) When sequence data from many nuclear genes are available, protein sequences appear to give more robust estimates than DNA sequences. (3) Nuclear proteins are generally more suitable than mitochondrial proteins for time estimation. (4) It is important first to construct a phylogenetic tree for a group of species using some outgroups and then estimate the branch lengths. (5) It appears to be better to use a few reliable calibration points rather than many unreliable ones. Considering all these factors and using two calibration points, we estimated that the human lineage diverged from the chimpanzee, gorilla, orangutan, Old World monkey, and New World monkey lineages approximately 6 MYA (with a range of 5-7), 7 MYA (range, 6-8), 13 MYA (range, 12-15), 23 MYA (range, 21-25), and 33 MYA (range 32-36).
                Bookmark

                Author and article information

                Conference
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central|1
                1471-2148
                2007
                16 August 2007
                : 7
                : Suppl 2
                : S11
                Affiliations
                [1 ]Dipartimento di Biologia animale (DBA) Università degli Studi di Palermo, via Archirafi 18. Palermo, Italy
                [2 ]Dipartimento di Biologia Animale e Genetica, Laboratori di Antropologia, Via del Proconsolo 12, 50122 Firenze, Italy
                [3 ]Comparative Molecular Cytogenetics Core, National Cancer Institute, Frederick Maryland, USA
                Article
                1471-2148-7-S2-S11
                10.1186/1471-2148-7-S2-S11
                1963484
                17767727
                02976abd-1b46-4550-a990-7ae73dcc0cad
                Copyright © 2007 Dumas et al; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Second Congress of Italian Evolutionary Biologists (First Congress of the Italian Society for Evolutionary Biology)
                Florence, Italy
                4–7 September 2006
                History
                Categories
                Research

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article