41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Detection of Breast Cancer with Mammography: Effect of an Artificial Intelligence Support System

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d15955824e99">Purpose To compare breast cancer detection performance of radiologists reading mammographic examinations unaided versus supported by an artificial intelligence (AI) system. Materials and Methods An enriched retrospective, fully crossed, multireader, multicase, HIPAA-compliant study was performed. Screening digital mammographic examinations from 240 women (median age, 62 years; range, 39-89 years) performed between 2013 and 2017 were included. The 240 examinations (100 showing cancers, 40 leading to false-positive recalls, 100 normal) were interpreted by 14 Mammography Quality Standards Act-qualified radiologists, once with and once without AI support. The readers provided a Breast Imaging Reporting and Data System score and probability of malignancy. AI support provided radiologists with interactive decision support (clicking on a breast region yields a local cancer likelihood score), traditional lesion markers for computer-detected abnormalities, and an examination-based cancer likelihood score. The area under the receiver operating characteristic curve (AUC), specificity and sensitivity, and reading time were compared between conditions by using mixed-models analysis dof variance and generalized linear models for multiple repeated measurements. Results On average, the AUC was higher with AI support than with unaided reading (0.89 vs 0.87, respectively; P = .002). Sensitivity increased with AI support (86% [86 of 100] vs 83% [83 of 100]; P = .046), whereas specificity trended toward improvement (79% [111 of 140]) vs 77% [108 of 140]; P = .06). Reading time per case was similar (unaided, 146 seconds; supported by AI, 149 seconds; P = .15). The AUC with the AI system alone was similar to the average AUC of the radiologists (0.89 vs 0.87). Conclusion Radiologists improved their cancer detection at mammography when using an artificial intelligence system for support, without requiring additional reading time. Published under a CC BY 4.0 license. See also the editorial by Bahl in this issue. </p>

          Related collections

          Author and article information

          Journal
          Radiology
          Radiology
          Radiological Society of North America (RSNA)
          0033-8419
          1527-1315
          February 2019
          February 2019
          : 290
          : 2
          : 305-314
          Article
          10.1148/radiol.2018181371
          30457482
          02a60866-6bf5-4d4f-902c-b5ef57d3ad96
          © 2019
          History

          Comments

          Comment on this article