32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Heat shock factor 1 induces cancer stem cell phenotype in breast cancer cell lines

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Heat shock factor 1 (HSF1) has long been recognized as the master transcription factor that regulates heat shock proteins (HSPs).  More recently HSF1 has been associated with a broader role in regulating response to a variety of cellular stresses beyond heat-shock.  We previously found that high HSF1 expression is associated with poor outcome in lung, breast and colon cancers. Importantly, however, the HSF1 signature correlated with poor outcome in these studies was not related to the heat shock response, which suggested that tumor outcome associated with high HSF expression may be due to processes other than stress response. Hence, we explored the question whether high HSF1 expression might be associated with the cancer stem cell (CSC) phenotype. To do so, we examined the association of HSF1 with CSC phenotype by FACS and immunofluorescence. In addition, we evaluated the effects of HSF1 over-expression and knock-down on sphere formation and CSC marker expression in breast cancer cell lines. Here, we report results demonstrating that high HSF1 not only correlates with CSC marker expression, but inducible HSF1 over-expression augments and HSF1 knock-down inhibits CSC phenotype. Furthermore, HSF1 expression confers resistance to chemotherapeutic drugs and increases CSC frequency. In conclusion, our study indicates that one of the potential HSP-independent HSF1 driven mechanisms that may contribute to poor outcome in human tumors involves regulation of the CSC phenotype. Hence, therapeutic inhibition of HSF1 may be one route to target CSCs in human tumors.

          Electronic supplementary material

          The online version of this article (doi:10.1007/s10549-015-3521-1) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy.

          Tumorigenic breast cancer cells that express high levels of CD44 and low or undetectable levels of CD24 (CD44(>)/CD24(>/low)) may be resistant to chemotherapy and therefore responsible for cancer relapse. These tumorigenic cancer cells can be isolated from breast cancer biopsies and propagated as mammospheres in vitro. In this study, we aimed to test directly in human breast cancers the effect of conventional chemotherapy or lapatinib (an epidermal growth factor receptor [EGFR]/HER2 pathway inhibitor) on this tumorigenic CD44(>) and CD24(>/low) cell population. Paired breast cancer core biopsies were obtained from patients with primary breast cancer before and after 12 weeks of treatment with neoadjuvant chemotherapy (n = 31) or, for patients with HER2-positive tumors, before and after 6 weeks of treatment with the EGFR/HER2 inhibitor lapatinib (n = 21). Single-cell suspensions established from these biopsies were stained with antibodies against CD24, CD44, and lineage markers and analyzed by flow cytometry. The potential of cells from biopsy samples taken before and after treatment to form mammospheres in culture was compared. All statistical tests were two-sided. Chemotherapy treatment increased the percentage of CD44(>)/CD24(>/low) cells (mean at baseline vs 12 weeks, 4.7%, 95% confidence interval [CI] = 3.5% to 5.9%, vs 13.6%, 95% CI = 10.9% to 16.3%; P )/CD24(>/low) cells (mean at baseline vs 6 weeks, 10.0%, 95% CI = 7.2% to 12.8%, vs 7.5%, 95% CI = 4.1% to 10.9%) and a statistically non-significant decrease in MSFE (mean at baseline vs 6 weeks, 16.1%, 95% CI = 8.7% to 23.5%, vs 10.8%, 95% CI = 4.0% to 17.6%). These studies provide clinical evidence for a subpopulation of chemotherapy-resistant breast cancer-initiating cells. Lapatinib did not lead to an increase in these tumorigenic cells, and, in combination with conventional therapy, specific pathway inhibitors may provide a therapeutic strategy for eliminating these cells to decrease recurrence and improve long-term survival.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature.

            Tumors may be initiated and maintained by a cellular subcomponent that displays stem cell properties. We have used the expression of aldehyde dehydrogenase as assessed by the ALDEFLUOR assay to isolate and characterize cancer stem cell (CSC) populations in 33 cell lines derived from normal and malignant mammary tissue. Twenty-three of the 33 cell lines contained an ALDEFLUOR-positive population that displayed stem cell properties in vitro and in NOD/SCID xenografts. Gene expression profiling identified a 413-gene CSC profile that included genes known to play a role in stem cell function, as well as genes such as CXCR1/IL-8RA not previously known to play such a role. Recombinant interleukin-8 (IL-8) increased mammosphere formation and the ALDEFLUOR-positive population in breast cancer cell lines. Finally, we show that ALDEFLUOR-positive cells are responsible for mediating metastasis. These studies confirm the hierarchical organization of immortalized cell lines, establish techniques that can facilitate the characterization of regulatory pathways of CSCs, and identify potential stem cell markers and therapeutic targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer.

              To examine the role of cancer stem cells (CSC) in mediating metastasis in inflammatory breast cancer (IBC) and the association of these cells with patient outcome in this aggressive type of breast cancer. CSCs were isolated from SUM149 and MARY-X, an IBC cell line and primary xenograft, by virtue of increased aldehyde dehydrogenase (ALDH) activity as assessed by the ALDEFLUOR assay. Invasion and metastasis of CSC populations were assessed by in vitro and mouse xenograft assays. Expression of ALDH1 was determined on a retrospective series of 109 IBC patients and this was correlated with histoclinical data. All statistical tests were two sided. Log-rank tests using Kaplan-Meier analysis were used to determine the correlation of ALDH1 expression with development of metastasis and patient outcome. Both in vitro and xenograft assays showed that invasion and metastasis in IBC are mediated by a cellular component that displays ALDH activity. Furthermore, expression of ALDH1 in IBC was an independent predictive factor for early metastasis and decreased survival in this patient population. These results suggest that the metastatic, aggressive behavior of IBC may be mediated by a CSC component that displays ALDH enzymatic activity. ALDH1 expression represents the first independent prognostic marker to predict metastasis and poor patient outcome in IBC. The results illustrate how stem cell research can translate into clinical practice in the IBC field.
                Bookmark

                Author and article information

                Contributors
                Tince@med.miami.edu
                Journal
                Breast Cancer Res Treat
                Breast Cancer Res. Treat
                Breast Cancer Research and Treatment
                Springer US (New York )
                0167-6806
                1573-7217
                30 July 2015
                30 July 2015
                2015
                : 153
                : 1
                : 57-66
                Affiliations
                [ ]Department of Pathology, Sylvester Comprehensive Cancer Center, Braman Family Breast Cancer Institute and Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL USA
                [ ]Department of Pathology, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA USA
                Article
                3521
                10.1007/s10549-015-3521-1
                4536274
                26223813
                02aef92c-0459-467e-afe4-e70ab4352b83
                © The Author(s) 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 20 July 2015
                : 22 July 2015
                Categories
                Preclinical Study
                Custom metadata
                © Springer Science+Business Media New York 2015

                Oncology & Radiotherapy
                breast cancer,heat shock factor 1 (hsf1),cancer stem cell,tumorsphere assay

                Comments

                Comment on this article