Blog
About

52
views
0
recommends
+1 Recommend
2 collections
    2
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Propagation of Protein Aggregation in Neurodegenerative Diseases

      1 , 1

      Annual Review of Biochemistry

      Annual Reviews

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Most common neurodegenerative diseases feature deposition of protein amyloids and degeneration of brain networks. Amyloids are ordered protein assemblies that can act as templates for their own replication through monomer addition. Evidence suggests that this characteristic may underlie the progression of pathology in neurodegenerative diseases. Many different amyloid proteins, including Aβ, tau, and α-synuclein, exhibit properties similar to those of infectious prion protein in experimental systems: discrete and self-replicating amyloid structures, transcellular propagation of aggregation, and transmissible neuropathology. This review discusses the contribution of prion phenomena and transcellular propagation to the progression of pathology in common neurodegenerative diseases such as Alzheimer's and Parkinson's. It reviews fundamental events such as cell entry, amplification, and transcellular movement. It also discusses amyloid strains, which produce distinct patterns of neuropathology and spread through the nervous system. These concepts may impact the development of new diagnostic and therapeutic strategies.

          Related collections

          Most cited references 84

          • Record: found
          • Abstract: found
          • Article: not found

          Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse.

          Amyloid-beta peptide (Abeta) seems to have a central role in the neuropathology of Alzheimer's disease (AD). Familial forms of the disease have been linked to mutations in the amyloid precursor protein (APP) and the presenilin genes. Disease-linked mutations in these genes result in increased production of the 42-amino-acid form of the peptide (Abeta42), which is the predominant form found in the amyloid plaques of Alzheimer's disease. The PDAPP transgenic mouse, which overexpresses mutant human APP (in which the amino acid at position 717 is phenylalanine instead of the normal valine), progressively develops many of the neuropathological hallmarks of Alzheimer's disease in an age- and brain-region-dependent manner. In the present study, transgenic animals were immunized with Abeta42, either before the onset of AD-type neuropathologies (at 6 weeks of age) or at an older age (11 months), when amyloid-beta deposition and several of the subsequent neuropathological changes were well established. We report that immunization of the young animals essentially prevented the development of beta-amyloid-plaque formation, neuritic dystrophy and astrogliosis. Treatment of the older animals also markedly reduced the extent and progression of these AD-like neuropathologies. Our results raise the possibility that immunization with amyloid-beta may be effective in preventing and treating Alzheimer's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Trans-cellular propagation of Tau aggregation by fibrillar species.

            Aggregation of the microtubule associated protein Tau is associated with several neurodegenerative disorders, including Alzheimer disease and frontotemporal dementia. In Alzheimer disease, Tau pathology spreads progressively throughout the brain, possibly along existing neural networks. However, it is still unclear how the propagation of Tau misfolding occurs. Intriguingly, in animal models, vaccine-based therapies have reduced Tau and synuclein pathology by uncertain mechanisms, given that these proteins are intracellular. We have previously speculated that trans-cellular propagation of misfolding could be mediated by a process similar to prion pathogenesis, in which fibrillar Tau aggregates spread pathology from cell to cell. However, there has been little evidence to demonstrate true trans-cellular propagation of Tau misfolding, in which Tau aggregates from one cell directly contact Tau protein in the recipient cell to trigger further aggregation. Here we have observed that intracellular Tau fibrils are directly released into the medium and then taken up by co-cultured cells. Internalized Tau aggregates induce fibrillization of intracellular Tau in these naive recipient cells via direct protein-protein contact that we demonstrate using FRET. Tau aggregation can be amplified across several generations of cells. An anti-Tau monoclonal antibody blocks Tau aggregate propagation by trapping fibrils in the extracellular space and preventing their uptake. Thus, propagation of Tau protein misfolding among cells can be mediated by release and subsequent uptake of fibrils that directly contact native protein in recipient cells. These results support the model of aggregate propagation by templated conformational change and suggest a mechanism for vaccine-based therapies in neurodegenerative diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prion-like propagation of mutant superoxide dismutase-1 misfolding in neuronal cells.

              Deposition of proteins of aberrant conformation is the hallmark of many neurodegenerative diseases. Misfolding of the normally globular mutant superoxide dismutase-1 (SOD1) is a central, early, but poorly understood event in the pathogenic cascade leading to familial forms of ALS. Here we report that aggregates composed of an ALS-causing SOD1 mutant penetrate inside cells by macropinocytosis and rapidly exit the macropinocytic compartment to nucleate aggregation of the cytosolic, otherwise soluble, mutant SOD1 protein. Once initiated, mutant SOD1 aggregation is self-perpetuating. Mutant SOD1 aggregates transfer from cell to cell with remarkable efficiency, a process that does not require contacts between cells but depends on the extracellular release of aggregates. This study reveals that SOD1 aggregates, propagate in a prion-like manner in neuronal cells and sheds light on the mechanisms underlying aggregate uptake and cell-to-cell transfer.
                Bookmark

                Author and article information

                Journal
                Annual Review of Biochemistry
                Annu. Rev. Biochem.
                Annual Reviews
                0066-4154
                1545-4509
                June 20 2019
                June 20 2019
                : 88
                : 1
                : 785-810
                Affiliations
                [1 ]Center for Alzheimer's and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA;
                Article
                10.1146/annurev-biochem-061516-045049
                © 2019

                Comments

                Comment on this article