47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Tracking individuals shows spatial fidelity is a key regulator of ant social organization.

      Science (New York, N.Y.)
      Animals, Ants, physiology, Behavior, Animal, Mass Behavior, Spatial Behavior

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ants live in organized societies with a marked division of labor among workers, but little is known about how this division of labor is generated. We used a tracking system to continuously monitor individually tagged workers in six colonies of the ant Camponotus fellah over 41 days. Network analyses of more than 9 million interactions revealed three distinct groups that differ in behavioral repertoires. Each group represents a functional behavioral unit with workers moving from one group to the next as they age. The rate of interactions was much higher within groups than between groups. The precise information on spatial and temporal distribution of all individuals allowed us to calculate the expected rates of within- and between-group interactions. These values suggest that the network of interaction within colonies is primarily mediated by age-induced changes in the spatial location of workers.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Community detection in graphs

          The modern science of networks has brought significant advances to our understanding of complex systems. One of the most relevant features of graphs representing real systems is community structure, or clustering, i. e. the organization of vertices in clusters, with many edges joining vertices of the same cluster and comparatively few edges joining vertices of different clusters. Such clusters, or communities, can be considered as fairly independent compartments of a graph, playing a similar role like, e. g., the tissues or the organs in the human body. Detecting communities is of great importance in sociology, biology and computer science, disciplines where systems are often represented as graphs. This problem is very hard and not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community of scientists working on it over the past few years. We will attempt a thorough exposition of the topic, from the definition of the main elements of the problem, to the presentation of most methods developed, with a special focus on techniques designed by statistical physicists, from the discussion of crucial issues like the significance of clustering and how methods should be tested and compared against each other, to the description of applications to real networks.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Maps of random walks on complex networks reveal community structure

            To comprehend the multipartite organization of large-scale biological and social systems, we introduce a new information theoretic approach that reveals community structure in weighted and directed networks. The method decomposes a network into modules by optimally compressing a description of information flows on the network. The result is a map that both simplifies and highlights the regularities in the structure and their relationships. We illustrate the method by making a map of scientific communication as captured in the citation patterns of more than 6000 journals. We discover a multicentric organization with fields that vary dramatically in size and degree of integration into the network of science. Along the backbone of the network -- including physics, chemistry, molecular biology, and medicine -- information flows bidirectionally, but the map reveals a directional pattern of citation from the applied fields to the basic sciences.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Adaptive significance of the age polyethism schedule in honeybee colonies

                Bookmark

                Author and article information

                Journal
                23599264
                10.1126/science.1234316

                Chemistry
                Animals,Ants,physiology,Behavior, Animal,Mass Behavior,Spatial Behavior
                Chemistry
                Animals, Ants, physiology, Behavior, Animal, Mass Behavior, Spatial Behavior

                Comments

                Comment on this article