30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Meta-Analysis of Cell Therapy Trials for Patients With Heart Failure

      1 ,   1 , 1 , 1
      Circulation Research
      Ovid Technologies (Wolters Kluwer Health)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cell-based therapies are a promising intervention for the treatment of heart failure (HF) secondary to ischemic and nonischemic cardiomyopathy. However, the clinical efficacy of such new treatment requires further evaluation.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: not found
          • Article: not found

          ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance.

            SCIPIO is a first-in-human, phase 1, randomized, open-label trial of autologous c-kit(+) cardiac stem cells (CSCs) in patients with heart failure of ischemic etiology undergoing coronary artery bypass grafting (CABG). In the present study, we report the surgical aspects and interim cardiac magnetic resonance (CMR) results. A total of 33 patients (20 CSC-treated and 13 control subjects) met final eligibility criteria and were enrolled in SCIPIO. CSCs were isolated from the right atrial appendage harvested and processed during surgery. Harvesting did not affect cardiopulmonary bypass, cross-clamp, or surgical times. In CSC-treated patients, CMR showed a marked increase in both LVEF (from 27.5 ± 1.6% to 35.1 ± 2.4% [P=0.004, n=8] and 41.2 ± 4.5% [P=0.013, n=5] at 4 and 12 months after CSC infusion, respectively) and regional EF in the CSC-infused territory. Infarct size (late gadolinium enhancement) decreased after CSC infusion (by manual delineation: -6.9 ± 1.5 g [-22.7%] at 4 months [P=0.002, n=9] and -9.8 ± 3.5 g [-30.2%] at 12 months [P=0.039, n=6]). LV nonviable mass decreased even more (-11.9 ± 2.5 g [-49.7%] at 4 months [P=0.001] and -14.7 ± 3.9 g [-58.6%] at 12 months [P=0.013]), whereas LV viable mass increased (+11.6 ± 5.1 g at 4 months after CSC infusion [P=0.055] and +31.5 ± 11.0 g at 12 months [P=0.035]). Isolation of CSCs from cardiac tissue obtained in the operating room is feasible and does not alter practices during CABG surgery. CMR shows that CSC infusion produces a striking improvement in both global and regional LV function, a reduction in infarct size, and an increase in viable tissue that persist at least 1 year and are consistent with cardiac regeneration. This study is registered with clinicaltrials.gov, trial number NCT00474461.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis

              Objective To investigate whether discrepancies in trials of use of bone marrow stem cells in patients with heart disease account for the variation in reported effect size in improvement of left ventricular function. Design Identification and counting of factual discrepancies in trial reports, and sample size weighted regression against therapeutic effect size. Meta-analysis of trials that provided sufficient information. Data sources PubMed and Embase from inception to April 2013. Eligibility for selecting studies Randomised controlled trials evaluating the effect of autologous bone marrow stem cells for heart disease on mean left ventricular ejection fraction. Results There were over 600 discrepancies in 133 reports from 49 trials. There was a significant association between the number of discrepancies and the reported increment in EF with bone marrow stem cell therapy (Spearman’s r=0.4, P=0.005). Trials with no discrepancies were a small minority (five trials) and showed a mean EF effect size of −0.4%. The 24 trials with 1-10 discrepancies showed a mean effect size of 2.1%. The 12 with 11-20 discrepancies showed a mean effect of size 3.0%. The three with 21-30 discrepancies showed a mean effect size of 5.7%. The high discrepancy group, comprising five trials with over 30 discrepancies each, showed a mean effect size of 7.7%. Conclusions Avoiding discrepancies is difficult but is important because discrepancy count is related to effect size. The mechanism is unknown but should be explored in the design of future trials because in the five trials without discrepancies the effect of bone marrow stem cell therapy on ejection fraction is zero.
                Bookmark

                Author and article information

                Journal
                Circulation Research
                Circ Res
                Ovid Technologies (Wolters Kluwer Health)
                0009-7330
                1524-4571
                April 10 2015
                April 10 2015
                : 116
                : 8
                : 1361-1377
                Affiliations
                [1 ]From the Systematic Review Group, R&D Department, NHS Blood and Transplant, Oxford, UK (S.A.F., C.D.); Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK (S.A.F., C.D., E.M.-R.); Department of Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK (A.M.); and Stem Cell Research Laboratory, R&D Department, NHS Blood and Transplant, Oxford, UK (E.M.-R.).
                Article
                10.1161/CIRCRESAHA.116.304386
                25632038
                02ba4575-887c-4578-ac0a-90d320de572e
                © 2015
                History

                Comments

                Comment on this article