21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Leptin Resistance in Vagal Afferent Neurons Inhibits Cholecystokinin Signaling and Satiation in Diet Induced Obese Rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Aims

          The gastrointestinal hormone cholecystokinin (CCK) plays an important role in regulating meal size and duration by activating CCK1 receptors on vagal afferent neurons (VAN). Leptin enhances CCK signaling in VAN via an early growth response 1 (EGR1) dependent pathway thereby increasing their sensitivity to CCK. In response to a chronic ingestion of a high fat diet, VAN develop leptin resistance and the satiating effects of CCK are reduced. We tested the hypothesis that leptin resistance in VAN is responsible for reducing CCK signaling and satiation.

          Results

          Lean Zucker rats sensitive to leptin signaling, significantly reduced their food intake following administration of CCK8S (0.22 nmol/kg, i.p.), while obese Zucker rats, insensitive to leptin, did not. CCK signaling in VAN of obese Zucker rats was reduced, preventing CCK-induced up-regulation of Y2 receptor and down-regulation of melanin concentrating hormone 1 receptor (MCH1R) and cannabinoid receptor (CB1). In VAN from diet-induced obese (DIO) Sprague Dawley rats, previously shown to become leptin resistant, we demonstrated that the reduction in EGR1 expression resulted in decreased sensitivity of VAN to CCK and reduced CCK-induced inhibition of food intake. The lowered sensitivity of VAN to CCK in DIO rats resulted in a decrease in Y2 expression and increased CB1 and MCH1R expression. These effects coincided with the onset of hyperphagia in DIO rats.

          Conclusions

          Leptin signaling in VAN is required for appropriate CCK signaling and satiation. In response to high fat feeding, the onset of leptin resistance reduces the sensitivity of VAN to CCK thus reducing the satiating effects of CCK.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Gut hormone PYY(3-36) physiologically inhibits food intake.

          Food intake is regulated by the hypothalamus, including the melanocortin and neuropeptide Y (NPY) systems in the arcuate nucleus. The NPY Y2 receptor (Y2R), a putative inhibitory presynaptic receptor, is highly expressed on NPY neurons in the arcuate nucleus, which is accessible to peripheral hormones. Peptide YY(3-36) (PYY(3-36)), a Y2R agonist, is released from the gastrointestinal tract postprandially in proportion to the calorie content of a meal. Here we show that peripheral injection of PYY(3-36) in rats inhibits food intake and reduces weight gain. PYY(3-36) also inhibits food intake in mice but not in Y2r-null mice, which suggests that the anorectic effect requires the Y2R. Peripheral administration of PYY(3-36) increases c-Fos immunoreactivity in the arcuate nucleus and decreases hypothalamic Npy messenger RNA. Intra-arcuate injection of PYY(3-36) inhibits food intake. PYY(3-36) also inhibits electrical activity of NPY nerve terminals, thus activating adjacent pro-opiomelanocortin (POMC) neurons. In humans, infusion of normal postprandial concentrations of PYY(3-36) significantly decreases appetite and reduces food intake by 33% over 24 h. Thus, postprandial elevation of PYY(3-36) may act through the arcuate nucleus Y2R to inhibit feeding in a gut-hypothalamic pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway.

            The vagus nerve forms a neuro-anatomical link between the gastrointestinal tract and the brain. A number of gastrointestinal hormones, including cholecystokinin and ghrelin, require an intact vagal-brainstem-hypothalamic pathway to affect CNS feeding circuits. We have shown that the effects of peripheral administration of both peptide YY(3-36) (PYY(3-36)) and glucagon-like peptide-1 (GLP-1) on food intake and activation of hypothalamic arcuate feeding neurones are abolished following either bilateral sub-diaphragmatic total truncal vagotomy or brainstem-hypothalamic pathway transectioning in rodents. These findings suggest that the vagal-brainstem-hypothalamic pathway may also play a role in the effects of circulating PYY(3-36) and GLP-1 on food intake.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats.

              In outbred Sprague-Dawley rats, about one-half develop diet-induced obesity (DIO) on a diet relatively high in fat and energy (HE diet). The rest are diet resistant (DR), gaining weight and fat at the same rate as chow-fed controls. Here we selectively bred for high (DIO) and low (DR) weight gainers after 2 wk on HE diet. By the F5 generation, both male and female inbred DIO rats gained > 90% more weight than inbred DR rats on HE diets. Even on low-fat chow diet, DIO males were 31% and females were 22% heavier than their respective DR rats. Full metabolic characterization in male rats showed that weight-matched, chow-fed DIO-prone rats had similar energy intakes and feed efficiency [body weight (kg0.75)/energy intake (kcal)] but 44% more carcass fat than comparable DR-prone rats. Their basal plasma insulin and glucose levels in the fed state were 70 and 14% higher, respectively. But, when fasted, DIO-prone oral glucose tolerance results were comparable to DR-prone rats. Chow-fed DIO-prone males also had 42% greater 24-h urine norepinephrine levels than DR-prone males. During 2 wk on HE diet, DIO rats ate 25% more, gained 115% more weight, had 36% more carcass fat, and were 42% more feed efficient than comparable DR rats. Fasted HE diet-fed DIO rats developed frank glucose intolerance during a glucose tolerance test with 55 and 158% greater insulin and glucose areas under the curve, respectively. Thus the DIO and DR traits in the outbred Sprague-Dawley population appear to be due to a polygenic pattern of inheritance.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                7 March 2012
                : 7
                : 3
                : e32967
                Affiliations
                [1]Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California Davis, Davis, California, United States of America
                Sapienza University of Rome, Italy
                Author notes

                Conceived and designed the experiments: GdL HR. Performed the experiments: GdL CBdlS EE JL. Analyzed the data: GdL CBdlS. Contributed reagents/materials/analysis tools: EE. Wrote the paper: GdL HR.

                Article
                PONE-D-11-19971
                10.1371/journal.pone.0032967
                3296757
                22412960
                02c07d17-ac6e-4935-9e47-25a5efad63d2
                de Lartigue et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 10 October 2011
                : 6 February 2012
                Page count
                Pages: 10
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Endocrine System
                Endocrine Physiology
                Molecular Cell Biology
                Signal Transduction
                Membrane Receptor Signaling
                Signaling Pathways
                Neuroscience
                Molecular Neuroscience
                Medicine
                Endocrinology
                Endocrine Physiology
                Nutrition

                Uncategorized
                Uncategorized

                Comments

                Comment on this article