69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Functional and Palaeoecological Implications of Tooth Morphology and Wear for the Megaherbivorous Dinosaurs from the Dinosaur Park Formation (Upper Campanian) of Alberta, Canada

      research-article
      1 , * , 2
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Megaherbivorous dinosaurs were exceptionally diverse on the Late Cretaceous island continent of Laramidia, and a growing body of evidence suggests that this diversity was facilitated by dietary niche partitioning. We test this hypothesis using the fossil megaherbivore assemblage from the Dinosaur Park Formation (upper Campanian) of Alberta as a model. Comparative tooth morphology and wear, including the first use of quantitative dental microwear analysis in the context of Cretaceous palaeosynecology, are used to infer the mechanical properties of the foods these dinosaurs consumed. The phylliform teeth of ankylosaurs were poorly adapted for habitually processing high-fibre plant matter. Nevertheless, ankylosaur diets were likely more varied than traditionally assumed: the relatively large, bladed teeth of nodosaurids would have been better adapted to processing a tougher, more fibrous diet than the smaller, cusp-like teeth of ankylosaurids. Ankylosaur microwear is characterized by a preponderance of pits and scratches, akin to modern mixed feeders, but offers no support for interspecific dietary differences. The shearing tooth batteries of ceratopsids are much better adapted to high-fibre herbivory, attested by their scratch-dominated microwear signature. There is tentative microwear evidence to suggest differences in the feeding habits of centrosaurines and chasmosaurines, but statistical support is not significant. The tooth batteries of hadrosaurids were capable of both shearing and crushing functions, suggestive of a broad dietary range. Their microwear signal overlaps broadly with that of ankylosaurs, and suggests possible dietary differences between hadrosaurines and lambeosaurines. Tooth wear evidence further indicates that all forms considered here exhibited some degree of masticatory propaliny. Our findings reveal that tooth morphology and wear exhibit different, but complimentary, dietary signals that combine to support the hypothesis of dietary niche partitioning. The inferred mechanical and dietary patterns appear constant over the 1.5 Myr timespan of the Dinosaur Park Formation megaherbivore chronofauna, despite continual species turnover.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Patterns of predation in a diverse predator-prey system.

          There are many cases where animal populations are affected by predators and resources in terrestrial ecosystems, but the factors that determine when one or the other predominates remain poorly understood. Here we show, using 40 years of data from the highly diverse mammal community of the Serengeti ecosystem, East Africa, that the primary cause of mortality for adults of a particular species is determined by two factors--the species diversity of both the predators and prey and the body size of that prey species relative to other prey and predators. Small ungulates in Serengeti are exposed to more predators, owing to opportunistic predation, than are larger ungulates; they also suffer greater predation rates, and experience strong predation pressure. A threshold occurs at prey body sizes of approximately 150 kg, above which ungulate species have few natural predators and exhibit food limitation. Thus, biodiversity allows both predation (top-down) and resource limitation (bottom-up) to act simultaneously to affect herbivore populations. This result may apply generally in systems where there is a diversity of predators and prey.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The functional adaptations of primate molar teeth.

            R Kay (1975)
            Measurements were taken on the upper and lower molars of 37 species of primates and one tupaiid to assess the relative importance of shearing, crushing and grinding features. Significant correlations were found between pairs of allometrically standardized dimensions which measure the same molar function (shearing, crushing, or grinding). Correlations between pairs of dimensions which do not measure the same function are not significant. Second molar adaptations for shearing, crushing, and grinding, as well as the length of the second lower molar, and the total surface of the post-canine dentition are negatively allometric with respect to metabolic rate. Species which take different proportions of fruit, leaves, and insects in their diets have different molar structure. Frugivores have small teeth for their adult body size with poorly developed shearing, crushing, and grinding features on their molars. By contrast, leaf-eating species tend to have large teeth for their adult body size with well developed shearing, crushing, and grinding. The second molars of insectivorous species were found to parallel closely those of leaf-eating species. The two groups are clearly distinguishable from the former on the basis of body size alone: the smallest living primate leaf-eater is on order of magnitude larger than the largest living primate insectivore.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dental microwear texture analysis shows within-species diet variability in fossil hominins.

              Reconstructing the diets of extinct hominins is essential to understanding the paleobiology and evolutionary history of our lineage. Dental microwear, the study of microscopic tooth-wear resulting from use, provides direct evidence of what an individual ate in the past. Unfortunately, established methods of studying microwear are plagued with low repeatability and high observer error. Here we apply an objective, repeatable approach for studying three-dimensional microwear surface texture to extinct South African hominins. Scanning confocal microscopy together with scale-sensitive fractal analysis are used to characterize the complexity and anisotropy of microwear. Results for living primates show that this approach can distinguish among diets characterized by different fracture properties. When applied to hominins, microwear texture analysis indicates that Australopithecus africanus microwear is more anisotropic, but also more variable in anisotropy than Paranthropus robustus. This latter species has more complex microwear textures, but is also more variable in complexity than A. africanus. This suggests that A. africanus ate more tough foods and P. robustus consumed more hard and brittle items, but that both had variable and overlapping diets.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                11 June 2014
                : 9
                : 6
                : e98605
                Affiliations
                [1 ]Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
                [2 ]Department of Comparative Biology & Experimental Medicine, University of Calgary, Calgary, Alberta, Canada
                Raymond M. Alf Museum of Paleontology, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JCM JSA. Performed the experiments: JCM. Analyzed the data: JCM. Contributed reagents/materials/analysis tools: JCM JSA. Wrote the paper: JCM JSA.

                [¤]

                Current address: Palaeobiology, Canadian Museum of Nature, Ottawa, Ontario, Canada

                Article
                PONE-D-13-53408
                10.1371/journal.pone.0098605
                4053334
                24918431
                02cdc063-46df-470f-b32c-3b977eb96d37
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 December 2013
                : 30 April 2014
                Page count
                Pages: 34
                Funding
                Funding to JCM was provided by an NSERC Alexander Graham Bell Canada Graduate Scholarship, Alberta Innovates Technology Futures graduate student scholarship, Queen Elizabeth II Graduate Scholarship, and Jurassic Foundation grant. Funding to JSA was provided by an NSERC Discovery grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Ecology
                Ecosystems
                Ecosystem Functioning
                Paleoecology
                Evolutionary Biology
                Paleontology
                Paleobiology
                Paleozoology
                Vertebrate Paleontology
                Taphonomy
                Earth Sciences
                Ecology and Environmental Sciences

                Uncategorized
                Uncategorized

                Comments

                Comment on this article