Blog
About

7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neural Network Models for Paraphrase Identification, Semantic Textual Similarity, Natural Language Inference, and Question Answering

      Preprint

      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this paper, we analyze several neural network designs (and their variations) for sentence pair modeling and compare their performance extensively across eight datasets, including paraphrase identification, semantic textual similarity, natural language inference, and question answering tasks. Although most of these models have claimed state-of-the-art performance, the original papers often reported on only one or two selected datasets. We provide a systematic study and show that (i) encoding contextual information by LSTM and inter-sentence interactions are critical, (ii) Tree-LSTM does not help as much as previously claimed but surprisingly improves performance on Twitter datasets, (iii) the Enhanced Sequential Inference Model is the best so far for larger datasets, while the Pairwise Word Interaction Model achieves the best performance when less data is available. We release our implementations as an open-source toolkit.

          Related collections

          Most cited references 15

          • Record: found
          • Abstract: not found
          • Conference Proceedings: not found

          Supervised Learning of Universal Sentence Representations from Natural Language Inference Data

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A large annotated corpus for learning natural language inference

            Understanding entailment and contradiction is fundamental to understanding natural language, and inference about entailment and contradiction is a valuable testing ground for the development of semantic representations. However, machine learning research in this area has been dramatically limited by the lack of large-scale resources. To address this, we introduce the Stanford Natural Language Inference corpus, a new, freely available collection of labeled sentence pairs, written by humans doing a novel grounded task based on image captioning. At 570K pairs, it is two orders of magnitude larger than all other resources of its type. This increase in scale allows lexicalized classifiers to outperform some sophisticated existing entailment models, and it allows a neural network-based model to perform competitively on natural language inference benchmarks for the first time.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              SQuAD: 100,000+ Questions for Machine Comprehension of Text

              We present the Stanford Question Answering Dataset (SQuAD), a new reading comprehension dataset consisting of 100,000+ questions posed by crowdworkers on a set of Wikipedia articles, where the answer to each question is a segment of text from the corresponding reading passage. We analyze the dataset to understand the types of reasoning required to answer the questions, leaning heavily on dependency and constituency trees. We build a strong logistic regression model, which achieves an F1 score of 51.0%, a significant improvement over a simple baseline (20%). However, human performance (86.8%) is much higher, indicating that the dataset presents a good challenge problem for future research. The dataset is freely available at https://stanford-qa.com.
                Bookmark

                Author and article information

                Journal
                12 June 2018
                Article
                1806.04330

                http://creativecommons.org/licenses/by/4.0/

                Custom metadata
                13 pages; accepted to COLING 2018
                cs.CL

                Theoretical computer science

                Comments

                Comment on this article