6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Low-frequency parietal repetitive transcranial magnetic stimulation reduces fear and anxiety

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Anxiety disorders are the most prevalent mental disorders, with few effective neuropharmacological treatments, making treatments development critical. While noninvasive neuromodulation can successfully treat depression, few treatment targets have been identified specifically for anxiety disorders. Previously, we showed that shock threat increases excitability and connectivity of the intraparietal sulcus (IPS). Here we tested the hypothesis that inhibitory repetitive transcranial magnetic stimulation (rTMS) targeting this region would reduce induced anxiety. Subjects were exposed to neutral, predictable, and unpredictable shock threat, while receiving double-blinded, 1 Hz active or sham IPS rTMS. We used global brain connectivity and electric-field modelling to define the single-subject targets. We assessed subjective anxiety with online ratings and physiological arousal with the startle reflex. Startle stimuli (103 dB white noise) probed fear and anxiety during the predictable (fear-potentiated startle, FPS) and unpredictable (anxiety-potentiated startle, APS) conditions. Active rTMS reduced both FPS and APS relative to both the sham and no stimulation conditions. However, the online anxiety ratings showed no difference between the stimulation conditions. These results were not dependent on the laterality of the stimulation, or the subjects’ perception of the stimulation (i.e. active vs. sham). Results suggest that reducing IPS excitability during shock threat is sufficient to reduce physiological arousal related to both fear and anxiety, and are consistent with our previous research showing hyperexcitability in this region during threat. By extension, these results suggest that 1 Hz parietal stimulation may be an effective treatment for clinical anxiety, warranting future work in anxiety patients.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial.

          We tested whether transcranial magnetic stimulation (TMS) over the left dorsolateral prefrontal cortex (DLPFC) is effective and safe in the acute treatment of major depression. In a double-blind, multisite study, 301 medication-free patients with major depression who had not benefited from prior treatment were randomized to active (n = 155) or sham TMS (n = 146) conditions. Sessions were conducted five times per week with TMS at 10 pulses/sec, 120% of motor threshold, 3000 pulses/session, for 4-6 weeks. Primary outcome was the symptom score change as assessed at week 4 with the Montgomery-Asberg Depression Rating Scale (MADRS). Secondary outcomes included changes on the 17- and 24-item Hamilton Depression Rating Scale (HAMD) and response and remission rates with the MADRS and HAMD. Active TMS was significantly superior to sham TMS on the MADRS at week 4 (with a post hoc correction for inequality in symptom severity between groups at baseline), as well as on the HAMD17 and HAMD24 scales at weeks 4 and 6. Response rates were significantly higher with active TMS on all three scales at weeks 4 and 6. Remission rates were approximately twofold higher with active TMS at week 6 and significant on the MADRS and HAMD24 scales (but not the HAMD17 scale). Active TMS was well tolerated with a low dropout rate for adverse events (4.5%) that were generally mild and limited to transient scalp discomfort or pain. Transcranial magnetic stimulation was effective in treating major depression with minimal side effects reported. It offers clinicians a novel alternative for the treatment of this disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex.

            We applied trains of focal, rapid-rate transcranial magnetic stimulation (rTMS) to the motor cortex of 14 healthy volunteers with recording of the EMG from the contralateral abductor pollicis brevis, extensor carpi radialis, biceps brachii and deltoid muscles. Modulation of the amplitude of motor evoked potentials (MEPs) produced in the target muscle during rTMS showed a pattern of inhibitory and excitatory effects which depended on the rTMS frequency and intensity. With the magnetic coil situated over the optimal scalp position for activating the abductor pollicis brevis, rTMS led to spread of excitation, as evident from the induction of progressively larger MEPs in the other muscles. The number of pulses inducing this spread of excitation decreased with increasing rTMS frequency and intensity. Latency of the MEPs produced in the other muscles during the spread of excitation was significantly longer than that produced by single-pulse TMS applied to the optimal scalp positions for their activation. The difference in MEP latency could be explained by a delay in intracortical conduction along myelinated cortico-cortical pathways. Following rTMS, a 3-4 min period of increased excitability was demonstrated by an increase in the amplitude of MEPs produced in the target muscles by single-pulse TMS. Nevertheless, repeated rTMS trains applied 1 min apart led to similar modulation of the responses and to spread of excitation after approximately the same number of pulses. This suggests that the spread might be due to the breakdown of inhibitory connections or the recruitment of excitatory pathways, whereas the post-stimulation facilitation may be due to a transient increase in the efficacy of excitatory synapses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition.

              Repetitive transcranial magnetic stimulation (rTMS) procedures are being widely applied in therapeutic and investigative studies. Numerous studies have investigated the effects of rTMS on cortical excitability and inhibition, yielding somewhat contradictory results. The purpose of this study was to comprehensively review this literature to guide the selection of methodology in therapeutic studies. We conducted a comprehensive review of all identified studies that investigated effects of low and/or high frequency rTMS on motor cortical excitability or inhibition. Low frequency rTMS appears to produce a transient reduction in cortical excitability as assessed by motor evoked potential (MEP) size and produces no substantial effect on cortical inhibition. High frequency rTMS appears to produce a persistent increase in MEP size and a reduction in cortical inhibition measured with paired pulse methods although few studies have investigated frequencies greater than 5Hz. A number of novel stimulation paradigms have significant potential for altering cortical excitability but require further investigation. Although commonly applied forms of rTMS have effects on cortical excitability, more substantial effects may be obtained through the use of novel stimulation paradigms or innovative approaches to the stimulation of areas connected to a potential target site. Further research is required, however, before these paradigms can be more widely adopted.
                Bookmark

                Author and article information

                Contributors
                nicholas.balderston@pennmedicine.upenn.edu
                Journal
                Transl Psychiatry
                Transl Psychiatry
                Translational Psychiatry
                Nature Publishing Group UK (London )
                2158-3188
                17 February 2020
                17 February 2020
                2020
                : 10
                : 68
                Affiliations
                [1 ]ISNI 0000 0004 0464 0574, GRID grid.416868.5, Section on Neurobiology of Fear and Anxiety, , National Institute of Mental Health, National Institutes of Health Bethesda, ; Bethesda, MD USA
                [2 ]ISNI 0000 0004 1936 8972, GRID grid.25879.31, Center for Neuromodulation in Depression and Stress, Department of Psychiatry, , University of Pennsylvania Philadelphia, ; Philadelphia, PA USA
                [3 ]ISNI 0000 0004 0464 0574, GRID grid.416868.5, Noninvasive Neuromodulation Unit, , National Institute of Mental Health, National Institutes of Health Bethesda, ; Bethesda, MD USA
                Author information
                http://orcid.org/0000-0002-8565-1544
                Article
                751
                10.1038/s41398-020-0751-8
                7026136
                32066739
                02d5947e-2839-42f3-8f70-961826fb3843
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 26 August 2019
                : 2 January 2020
                : 10 January 2020
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000874, Brain and Behavior Research Foundation (Brain & Behavior Research Foundation);
                Funded by: FundRef https://doi.org/10.13039/100000025, U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH);
                Award ID: ZIAMH002798
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Clinical Psychology & Psychiatry
                human behaviour,psychiatric disorders
                Clinical Psychology & Psychiatry
                human behaviour, psychiatric disorders

                Comments

                Comment on this article