6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Renal Tubule Nedd4-2 Deficiency Stimulates Kir4.1/Kir5.1 and Thiazide-Sensitive NaCl Cotransporter in Distal Convoluted Tubule

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The potassium channel Kir4.1 forms the Kir4.1/Kir5.1 heterotetramer in the basolateral membrane of the distal convoluted tubule (DCT) and plays an important role in the regulation of the thiazide-sensitive NaCl cotransporter (NCC). Kidney-specific deletion of the ubiquitin ligase Nedd4-2 increases expression of NCC, and coexpression of Nedd4-2 inhibits Kir4.1/Kir5.1 in vitro. Whether Nedd4-2 regulates NCC expression in part by regulating Kir4.1/Kir5.1 channel activity in the DCT is unknown.

          Methods

          We used electrophysiology studies, immunoblotting, immunostaining, and renal clearance to examine Kir4.1/Kir5.1 activity in the DCT and NCC expression/activity in wild-type mice and mice with kidney-specific knockout of Nedd4-2, Kir4.1, or both.

          Results

          Deletion of Nedd4-2 increased the activity/expression of Kir4.1 in the DCT and also, hyperpolarized the DCT membrane. Expression of phosphorylated NCC/total NCC and thiazide-induced natriuresis were significantly increased in the Nedd4-2 knockout mice, but these mice were normokalemic. Double-knockout mice lacking both Kir4.1/Kir5.1 and Nedd4-2 in the kidney exhibited increased expression of the epithelial sodium channel α-subunit, largely abolished basolateral potassium ion conductance (to a degree similar to that of kidney-specific Kir4.1 knockout mice), and depolarization of the DCT membrane. Compared with wild-type mice, the double-knockout mice displayed inhibited expression of phosphorylated NCC and total NCC and had significantly blunted thiazide-induced natriuresis as well as renal potassium wasting and hypokalemia. However, NCC expression/activity was higher in the double-knockout mice than in Kir4.1 knockout mice.

          Conclusions

          Nedd4-2 regulates Kir4.1/Kir5.1 expression/activity in the DCT and modulates NCC expression by Kir4.1-dependent and Kir4.1-independent mechanisms. Basolateral Kir4.1/Kir5.1 activity in the DCT partially accounts for the stimulation of NCC activity/expression induced by deletion of Nedd4-2.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: not found

          With no lysine kinase 4 modulates sodium potassium 2 chloride cotransporter activity in vivo.

          With no lysine kinase 4 (WNK4) is essential to activate the thiazide-sensitive NaCl cotransporter (NCC) along the distal convoluted tubule, an effect central to the phenotype of familial hyperkalemic hypertension. Although effects on potassium and sodium channels along the connecting and collecting tubules have also been documented, WNK4 is typically believed to have little role in modulating sodium chloride reabsorption along the thick ascending limb of the loop of Henle. Yet wnk4-/- mice (knockout mice lacking WNK4) do not demonstrate the hypocalciuria typical of pure distal convoluted tubule dysfunction. Here, we tested the hypothesis that WNK4 also modulates bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2) function along the thick ascending limb. We confirmed that w nk4-/- mice are hypokalemic and waste sodium chloride, but are also normocalciuric. Results from Western blots suggested that the phosphorylated forms of both NCC and NKCC2 were in lower abundance in wnk4-/- mice than in controls. This finding was confirmed by immunofluorescence microscopy. Although the initial response to furosemide was similar in wnk4-/- mice and controls, the response was lower in the knockout mice when reabsorption along the distal convoluted tubule was inhibited. Using HEK293 cells, we showed that WNK4 increases the abundance of phosphorylated NKCC2. More supporting evidence that WNK4 may modulate NKCC2 emerges from a mouse model of WNK4-mediated familial hyperkalemic hypertension in which more phosphorylated NKCC2 is present than in controls. These data indicate that WNK4, in addition to modulating NCC, also modulates NKCC2, contributing to its physiological function in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Potassium conservation is impaired in mice with reduced renal expression of Kir4.1

            To better understand the role of the inward-rectifying K channel Kir4.1 (KCNJ10) in the distal nephron, we initially studied a global Kir4.1 knockout mouse (gKO), which demonstrated the hypokalemia and hypomagnesemia seen in SeSAME/EAST syndrome and was associated with reduced Na/Cl cotransporter (NCC) expression. Lethality by ~3 wk, however, limits the usefulness of this model, so we developed a kidney-specific Kir4.1 “knockdown” mouse (ksKD) using a cadherin 16 promoter and Cre-loxP methodology. These mice appeared normal and survived to adulthood. Kir4.1 protein expression was decreased ~50% vs. wild-type (WT) mice by immunoblotting, and immunofluorescence showed moderately reduced Kir4.1 staining in distal convoluted tubule that was minimal or absent in connecting tubule and cortical collecting duct. Under control conditions, the ksKD mice showed metabolic alkalosis and relative hypercalcemia but were normokalemic and mildly hypermagnesemic despite decreased NCC expression. In addition, the mice had a severe urinary concentrating defect associated with hypernatremia, enlarged kidneys with tubulocystic dilations, and reduced aquaporin-3 expression. On a K/Mg-free diet for 1 wk, however, ksKD mice showed marked hypokalemia (serum K: 1.5 ± 0.1 vs. 3.0 ± 0.1 mEq/l for WT), which was associated with renal K wasting (transtubular K gradient: 11.4 ± 0.8 vs. 1.6 ± 0.4 in WT). Phosphorylated-NCC expression increased in WT but not ksKD mice on the K/Mg-free diet, suggesting that loss of NCC adaptation underlies the hypokalemia. In conclusion, even modest reduction in Kir4.1 expression results in impaired K conservation, which appears to be mediated by reduced expression of activated NCC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immunolocalization of the ubiquitin-protein ligase Nedd4 in tissues expressing the epithelial Na+ channel (ENaC).

              The epithelial Na+ channel (ENaC) was previously shown to be expressed in several Na(+)- and fluid-absorbing epithelia, particularly those of the kidney, colon, and lung. We have recently identified the ubiquitin-protein ligase Nedd4 as an interacting protein with ENaC and demonstrated that Nedd4 binds by its WW domains to the proline-rich PY motifs of ENaC. These PY motifs were recently shown to be deleted/mutated in patients afflicted with Liddle's syndrome, a hereditary form of systemic renal hypertension. Such mutations cause elevated channel activity by an increase in channel number/stability at the plasma membrane and by increased channel opening. We then proposed that Nedd4, by regulating channel stability/ degradation, may be a suppressor of ENaC. To test whether Nedd4 is localized to those tissues/regions that express ENaC, we performed immunocytochemical analysis of rat Nedd4 (rNedd4) distribution in rat kidney, colon, and lung tissues. Our results show that, in the kidney, rNedd4 is primarily localized to the cortical collecting tubules and outer and inner medullary collecting ducts. These tubular segments were previously shown to express ENaC. The epithelium lining medullary calyxes was also intensely stained, and microvillar borders of proximal convoluted tubules expressed variable amounts of rNedd4. In the lung, rNedd4 was mainly expressed in the epithelia lining the airways, in the submucosal glands and ducts, and in the distal respiratory epithelium. These sites resemble the pattern of ENaC expression. In contrast, in the distal colon, rNedd4 was strongly expressed in the epithelia lining the crypts but not in the ENaC-expressing surface epithelium. Low-salt diet (to elevate serum aldosterone levels) had no effect on rNedd4 distribution in the kidney or colon. Thus Nedd4 is coexpressed and likely colocalizes with ENaC in specific regions within the kidney and lung but not in the colon. We speculate this difference in colocalization may reflect differences in the regulation of channel stability in those tissues.
                Bookmark

                Author and article information

                Contributors
                Journal
                Journal of the American Society of Nephrology
                JASN
                American Society of Nephrology (ASN)
                1046-6673
                1533-3450
                May 29 2020
                June 2020
                June 2020
                April 15 2020
                : 31
                : 6
                : 1226-1242
                Article
                10.1681/ASN.2019090923
                32295826
                02d85c99-8e12-4722-b72c-544420a8cbfe
                © 2020
                History

                Comments

                Comment on this article