23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Metformin and Resveratrol Inhibited High Glucose-Induced Metabolic Memory of Endothelial Senescence through SIRT1/p300/p53/p21 Pathway

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endothelial senescence plays crucial roles in diabetic vascular complication. Recent evidence indicated that transient hyperglycaemia could potentiate persistent diabetic vascular complications, a phenomenon known as “metabolic memory.” Although SIRT1 has been demonstrated to mediate high glucose-induced endothelial senescence, whether and how “metabolic memory” would affect endothelial senescence through SIRT1 signaling remains largely unknown. In this study, we investigated the involvement of SIRT1 axis as well as the protective effects of resveratrol (RSV) and metformin (MET), two potent SIRT1 activators, during the occurrence of “metabolic memory” of cellular senescence (senescent “memory”). Human umbilical vascular endothelial cells (HUVECs) were cultured in either normal glucose (NG)/high glucose (HG) media for 6 days, or 3 days of HG followed by 3 days of NG (HN), with or without RSV or MET treatment. It was shown that HN incubation triggered persistent downregulation of deacetylase SIRT1 and upregulation of acetyltransferase p300, leading to sustained hyperacetylation (at K382) and activation of p53, and subsequent p53/p21-mediated senescent “memory.” In contrast, senescent “memory” was abrogated by overexpression of SIRT1 or knockdown of p300. Interestingly, we found that SIRT1 and p300 could regulate each other in response to HN stimulation, suggesting that a delicate balance between acetyltransferases and deacetylases may be particularly important for sustained acetylation and activation of non-histone proteins (such as p53), and eventually the occurrence of “metabolic memory.” Furthermore, we found that RSV or MET treatment prevented senescent “memory” by modulating SIRT1/p300/p53/p21 pathway. Notably, early and continuous treatment of MET, but not RSV, was particularly important for preventing senescent “memory.” In conclusion, short-term high glucose stimulation could induce sustained endothelial senescence via SIRT1/p300/p53/p21 pathway. RVS or MET treatment could enhance SIRT1-mediated signaling and thus protect against senescent “memory” independent of their glucose lowering mechanisms. Therefore, they may serve as promising therapeutic drugs against the development of “metabolic memory.”

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          High absorption but very low bioavailability of oral resveratrol in humans.

          The dietary polyphenol resveratrol has been shown to have chemopreventive activity against cardiovascular disease and a variety of cancers in model systems, but it is not clear whether the drug reaches the proposed sites of action in vivo after oral ingestion, especially in humans. In this study, we examined the absorption, bioavailability, and metabolism of 14C-resveratrol after oral and i.v. doses in six human volunteers. The absorption of a dietary relevant 25-mg oral dose was at least 70%, with peak plasma levels of resveratrol and metabolites of 491 +/- 90 ng/ml (about 2 microM) and a plasma half-life of 9.2 +/- 0.6 h. However, only trace amounts of unchanged resveratrol (<5 ng/ml) could be detected in plasma. Most of the oral dose was recovered in urine, and liquid chromatography/mass spectrometry analysis identified three metabolic pathways, i.e., sulfate and glucuronic acid conjugation of the phenolic groups and, interestingly, hydrogenation of the aliphatic double bond, the latter likely produced by the intestinal microflora. Extremely rapid sulfate conjugation by the intestine/liver appears to be the rate-limiting step in resveratrol's bioavailability. Although the systemic bioavailability of resveratrol is very low, accumulation of resveratrol in epithelial cells along the aerodigestive tract and potentially active resveratrol metabolites may still produce cancer-preventive and other effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice.

            In lower eukaryotes, Sir2 serves as a histone deacetylase and is implicated in chromatin silencing, longevity, and genome stability. Here we mutated the Sirt1 gene, a homolog of yeast Sir2, in mice to study its function. We show that a majority of SIRT1 null embryos die between E9.5 and E14.5, displaying altered histone modification, impaired DNA damage response, and reduced ability to repair DNA damage. We demonstrate that Sirt1(+/-);p53(+/-) mice develop tumors in multiple tissues, whereas activation of SIRT1 by resveratrol treatment reduces tumorigenesis. Finally, we show that many human cancers exhibit reduced levels of SIRT1 compared to normal controls. Thus, SIRT1 may act as a tumor suppressor through its role in DNA damage response and genome integrity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence.

              The yeast Sir2 protein mediates chromatin silencing through an intrinsic NAD-dependent histone deacetylase activity. Sir2 is a conserved protein and was recently shown to regulate lifespan extension both in budding yeast and worms. Here, we show that SIRT1, the human Sir2 homolog, is recruited to the promyelocytic leukemia protein (PML) nuclear bodies of mammalian cells upon overexpression of either PML or oncogenic Ras (Ha-rasV12). SIRT1 binds and deacetylates p53, a component of PML nuclear bodies, and it can repress p53-mediated transactivation. Moreover, we show that SIRT1 and p53 co-localize in nuclear bodies upon PML upregulation. When overexpressed in primary mouse embryo fibroblasts (MEFs), SIRT1 antagonizes PML-induced acetylation of p53 and rescues PML-mediated premature cellular senescence. Taken together, our data establish the SIRT1 deacetylase as a novel negative regulator of p53 function capable of modulating cellular senescence.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                2 December 2015
                2015
                : 10
                : 12
                : e0143814
                Affiliations
                [001]State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Cardiovascular Institute, Fuwai Hospital, and National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
                Niigata University Graduate School of Medical and Dental Sciences, JAPAN
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: EZ QG YW. Performed the experiments: EZ QG HG. Analyzed the data: EZ QG HG. Contributed reagents/materials/analysis tools: EZ QG RX. Wrote the paper: EZ QG RX ST YW.

                Article
                PONE-D-15-27148
                10.1371/journal.pone.0143814
                4668014
                26629991
                02d868a8-b939-4bcc-a782-17181b712427
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 22 June 2015
                : 10 November 2015
                Page count
                Figures: 7, Tables: 0, Pages: 19
                Funding
                The authors are supported by the National Natural Science Foundation of China (91339103) (to YW) and Chinese Scholarship Council (201406210335) (to EZ).
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article