29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Two-Dimensional Model of the Colonic Crypt Accounting for the Role of the Basement Membrane and Pericryptal Fibroblast Sheath

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of the basement membrane is vital in maintaining the integrity and structure of an epithelial layer, acting as both a mechanical support and forming the physical interface between epithelial cells and the surrounding connective tissue. The function of this membrane is explored here in the context of the epithelial monolayer that lines the colonic crypt, test-tube shaped invaginations that punctuate the lining of the intestine and coordinate a regular turnover of cells to replenish the epithelial layer every few days. To investigate the consequence of genetic mutations that perturb the system dynamics and can lead to colorectal cancer, it must be possible to track the emerging tissue level changes that arise in the crypt. To that end, a theoretical crypt model with a realistic, deformable geometry is required. A new discrete crypt model is presented, which focuses on the interaction between cell- and tissue-level behaviour, while incorporating key subcellular components. The model contains a novel description of the role of the surrounding tissue and musculature, based upon experimental observations of the tissue structure of the crypt, which are also reported. A two-dimensional (2D) cross-sectional geometry is considered, and the shape of the crypt is allowed to evolve and deform. Simulation results reveal how the shape of the crypt may contribute mechanically to the asymmetric division events typically associated with the stem cells at the base. The model predicts that epithelial cell migration may arise due to feedback between cell loss at the crypt collar and density-dependent cell division, an hypothesis which can be investigated in a wet lab. This work forms the basis for investigation of the deformation of the crypt structure that can occur due to proliferation of cells exhibiting mutant phenotypes, experiments that would not be possible in vivo or in vitro.

          Author Summary

          At the onset of colorectal carcinogenesis, marked changes can be observed in the structure and dynamics of the crypts of Lieberkühn. These test tube shaped glands regularly punctuate the surface of the gut and are lined with a monolayer of epithelial cells which divide and migrate upwards to renew the intestinal surface every few days. The process by which the crypt structures breakdown, and the compliant environment that can be subsequently provided to mutated cells to allow the formation of adenomatous growths, is not yet well characterised. A limiting factor in the understanding of this process is the ability to observe easily the initial changes that occur, and which are necessary to disrupt the normal behaviour of the system. However, a predictive, theoretical model of the crypt that mimics the geometry and the tissue architecture can be used to perform in silico experiments and further such understanding. A model is introduced here that addresses the tissue structure of the crypt, and the stability it provides to the epithelial layer, while remaining deformable and without imposing a fixed geometry.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Disruption of epithelial cell-matrix interactions induces apoptosis

          Cell-matrix interactions have major effects upon phenotypic features such as gene regulation, cytoskeletal structure, differentiation, and aspects of cell growth control. Programmed cell death (apoptosis) is crucial for maintaining appropriate cell number and tissue organization. It was therefore of interest to determine whether cell- matrix interactions affect apoptosis. The present report demonstrates that apoptosis was induced by disruption of the interactions between normal epithelial cells and extracellular matrix. We have termed this phenomenon "anoikis." Overexpression of bcl-2 protected cells against anoikis. Cellular sensitivity to anoikis was apparently regulated: (a) anoikis did not occur in normal fibroblasts; (b) it was abrogated in epithelial cells by transformation with v-Ha-ras, v-src, or treatment with phorbol ester; (c) sensitivity to anoikis was conferred upon HT1080 cells or v-Ha-ras-transformed MDCK cells by reverse- transformation with adenovirus E1a; (d) anoikis in MDCK cells was alleviated by the motility factor, scatter factor. The results suggest that the circumvention of anoikis accompanies the acquisition of anchorage independence or cell motility.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bmi1 is expressed in vivo in intestinal stem cells.

            Bmi1 plays an essential part in the self-renewal of hematopoietic and neural stem cells. To investigate its role in other adult stem cell populations, we generated a mouse expressing a tamoxifen-inducible Cre from the Bmi1 locus. We found that Bmi1 is expressed in discrete cells located near the bottom of crypts in the small intestine, predominantly four cells above the base of the crypt (+4 position). Over time, these cells proliferate, expand, self-renew and give rise to all the differentiated cell lineages of the small intestine epithelium. The induction of a stable form of beta-catenin in these cells was sufficient to rapidly generate adenomas. Moreover, ablation of Bmi1(+) cells using a Rosa26 conditional allele, expressing diphtheria toxin, led to crypt loss. These experiments identify Bmi1 as an intestinal stem cell marker in vivo. Unexpectedly, the distribution of Bmi1-expressing stem cells along the length of the small intestine suggested that mammals use more than one molecularly distinguishable adult stem cell subpopulation to maintain organ homeostasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells.

              The transactivation of TCF target genes induced by Wnt pathway mutations constitutes the primary transforming event in colorectal cancer (CRC). We show that disruption of beta-catenin/TCF-4 activity in CRC cells induces a rapid G1 arrest and blocks a genetic program that is physiologically active in the proliferative compartment of colon crypts. Coincidently, an intestinal differentiation program is induced. The TCF-4 target gene c-MYC plays a central role in this switch by direct repression of the p21(CIP1/WAF1) promoter. Following disruption of beta-catenin/TCF-4 activity, the decreased expression of c-MYC releases p21(CIP1/WAF1) transcription, which in turn mediates G1 arrest and differentiation. Thus, the beta-catenin/TCF-4 complex constitutes the master switch that controls proliferation versus differentiation in healthy and malignant intestinal epithelial cells.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                May 2012
                May 2012
                24 May 2012
                : 8
                : 5
                : e1002515
                Affiliations
                [1 ]Department of Computer Science, University of Oxford, Oxford, United Kingdom
                [2 ]Microsoft Research Ltd., Cambridge, United Kingdom
                [3 ]College of Life Sciences, University of Dundee, Dundee, United Kingdom
                [4 ]Oxford Centre for Integrative Systems Biology, Department of Biochemistry, Oxford, United Kingdom
                University of Notre Dame, United States of America
                Author notes

                Conceived and designed the experiments: SJD PLA SAN ISN DJG JMO. Performed the experiments: SJD PLA SAN. Analyzed the data: SJD PLA SAN. Contributed reagents/materials/analysis tools: SJD PLA SAN ISN DJG JMO. Wrote the paper: SJD PLA.

                Article
                PCOMPBIOL-D-11-01345
                10.1371/journal.pcbi.1002515
                3359972
                22654652
                02d97481-36ba-4a8d-8daa-c8a109c5aec0
                Dunn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 12 September 2011
                : 22 March 2012
                Page count
                Pages: 20
                Categories
                Research Article
                Biology
                Computational Biology
                Biophysic Al Simulations
                Histology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article