36
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Multicentre Study of 5-year Outcomes Following Focal Therapy in Treating Clinically Significant Nonmetastatic Prostate Cancer

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d542042e330">Clinically significant nonmetastatic prostate cancer (PCa) is currently treated using whole-gland therapy. This approach is effective but can have urinary, sexual, and rectal side effects. </p>

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Developing and evaluating complex interventions: the new Medical Research Council guidance

          Evaluating complex interventions is complicated. The Medical Research Council's evaluation framework (2000) brought welcome clarity to the task. Now the council has updated its guidance
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer.

            Background The comparative effectiveness of treatments for prostate cancer that is detected by prostate-specific antigen (PSA) testing remains uncertain. Methods We compared active monitoring, radical prostatectomy, and external-beam radiotherapy for the treatment of clinically localized prostate cancer. Between 1999 and 2009, a total of 82,429 men 50 to 69 years of age received a PSA test; 2664 received a diagnosis of localized prostate cancer, and 1643 agreed to undergo randomization to active monitoring (545 men), surgery (553), or radiotherapy (545). The primary outcome was prostate-cancer mortality at a median of 10 years of follow-up. Secondary outcomes included the rates of disease progression, metastases, and all-cause deaths. Results There were 17 prostate-cancer-specific deaths overall: 8 in the active-monitoring group (1.5 deaths per 1000 person-years; 95% confidence interval [CI], 0.7 to 3.0), 5 in the surgery group (0.9 per 1000 person-years; 95% CI, 0.4 to 2.2), and 4 in the radiotherapy group (0.7 per 1000 person-years; 95% CI, 0.3 to 2.0); the difference among the groups was not significant (P=0.48 for the overall comparison). In addition, no significant difference was seen among the groups in the number of deaths from any cause (169 deaths overall; P=0.87 for the comparison among the three groups). Metastases developed in more men in the active-monitoring group (33 men; 6.3 events per 1000 person-years; 95% CI, 4.5 to 8.8) than in the surgery group (13 men; 2.4 per 1000 person-years; 95% CI, 1.4 to 4.2) or the radiotherapy group (16 men; 3.0 per 1000 person-years; 95% CI, 1.9 to 4.9) (P=0.004 for the overall comparison). Higher rates of disease progression were seen in the active-monitoring group (112 men; 22.9 events per 1000 person-years; 95% CI, 19.0 to 27.5) than in the surgery group (46 men; 8.9 events per 1000 person-years; 95% CI, 6.7 to 11.9) or the radiotherapy group (46 men; 9.0 events per 1000 person-years; 95% CI, 6.7 to 12.0) (P<0.001 for the overall comparison). Conclusions At a median of 10 years, prostate-cancer-specific mortality was low irrespective of the treatment assigned, with no significant difference among treatments. Surgery and radiotherapy were associated with lower incidences of disease progression and metastases than was active monitoring. (Funded by the National Institute for Health Research; ProtecT Current Controlled Trials number, ISRCTN20141297 ; ClinicalTrials.gov number, NCT02044172 .).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer.

              Interstitial radiation (implant) therapy is used to treat clinically localized adenocarcinoma of the prostate, but how it compares with other treatments is not known. To estimate control of prostate-specific antigen (PSA) after radical prostatectomy (RP), external beam radiation (RT), or implant with or without neoadjuvant androgen deprivation therapy in patients with clinically localized prostate cancer. Retrospective cohort study of outcome data compared using Cox regression multivariable analyses. A total of 1872 men treated between January 1989 and October 1997 with an RP (n = 888) or implant with or without neoadjuvant androgen deprivation therapy (n = 218) at the Hospital of the University of Pennsylvania, Philadelphia, or RT (n = 766) at the Joint Center for Radiation Therapy, Boston, Mass, were enrolled. Actuarial freedom from PSA failure (defined as PSA outcome). The relative risk (RR) of PSA failure in low-risk patients (stage T1c, T2a and PSA level 10 and 20 ng/mL or Gleason score > or =8) treated with implant compared with RP were 3.1 (95% CI, 1.5-6.1) and 3.0 (95% CI, 1.8-5.0), respectively. The addition of androgen deprivation to implant therapy did not improve PSA outcome in high-risk patients but resulted in a PSA outcome that was not statistically different compared with the results obtained using RP or RT in intermediate-risk patients. These results were unchanged when patients were stratified using the traditional rankings of biopsy Gleason scores of 2 through 4 vs 5 through 6 vs 7 vs 8 through 10. Low-risk patients had estimates of 5-year PSA outcome after treatment with RP, RT, or implant with or without neoadjuvant androgen deprivation that were not statistically different, whereas intermediate- and high-risk patients treated with RP or RT did better then those treated by implant. Prospective randomized trials are needed to verify these findings.
                Bookmark

                Author and article information

                Journal
                European Urology
                European Urology
                Elsevier BV
                03022838
                October 2018
                October 2018
                : 74
                : 4
                : 422-429
                Article
                10.1016/j.eururo.2018.06.006
                6156573
                29960750
                02e09a5a-47bd-4c8f-962f-ec622522b12c
                © 2018

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                scite_

                Similar content1,588

                Cited by108

                Most referenced authors573