2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Yinchen Linggui Zhugan decoction ameliorates high fat diet-induced nonalcoholic fatty liver disease by modulation of SIRT1/Nrf2 signaling pathway and gut microbiota

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Yinchen Linggui Zhugan decoction (YLZD) is an effective and classical traditional herbal prescription for treating the nonalcoholic fatty liver disease (NAFLD) and has been proven to be effective in the regulation of lipid metabolism disorder and attenuate inflammation for a NAFLD rat model. However, the exact underlying mechanism has not been elucidated. In the current study, a NAFLD rat model was established using a high-fat diet (HFD) for 10 weeks, followed by YLZD treatment with 1.92 g/kg/day for 4 weeks to explore the mechanisms of YLZD. Our results showed that YLZD decreased the hepatic lipid deposition, restored the liver tissue pathological lesions, inhibited the expression of oxidative stress, and decreased the inflammatory cytokines levels. Meanwhile, the genes and proteins expressions of SIRT1/Nrf2 signaling pathway together with downstream factors including HO-1 and NQO1 were elevated in the YLZD treated NAFLD rats. For further elaborating the upstream mechanism, short-chain fatty acids (SCFAs) in serum and feces were measured by liquid chromatograph mass spectrometer and gas chromatograph mass spectrometer, and the differences in gut microbiota of rats in each group were analyzed through high-throughput sequencing of 16S rRNA. The results demonstrated that the contents of butyric acid (BA) and total SCFAs in YLZD-treated NAFLD rats were significantly increased in serum and feces. 16S rRNA sequencing analysis illustrated that YLZD intervention led to a modification of the gut microbiota composition, with a decrease of Oribacterium, Lactobacillus and the ratio of Firmicutes/Bacteroides, as well as the increase in SCFAs-producing bacteria such as Christensenellaceae, Clostridia, Muribaculaceae, and Prevotellaceae. Spearman rank correlation analysis indicated that BA and total SCFAs were negatively co-related with oxidative stress-related factors and inflammatory cytokines, while they were positively co-related with SIRT1/Nrf2 pathway related genes and proteins. Furthermore, in vitro study confirmed that BA effectively reduced oxidative stress by activating SIRT1/Nrf2 signaling pathway in L02 cells. Together, the present data revealed YLZD could ameliorate HFD-induced NAFLD in rats by the modulation of SIRT1/Nrf2 signaling pathway and gut microbiota.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: not found

          Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes.

          Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide. We estimated the global prevalence, incidence, progression, and outcomes of NAFLD and nonalcoholic steatohepatitis (NASH). PubMed/MEDLINE were searched from 1989 to 2015 for terms involving epidemiology and progression of NAFLD. Exclusions included selected groups (studies that exclusively enrolled morbidly obese or diabetics or pediatric) and no data on alcohol consumption or other liver diseases. Incidence of hepatocellular carcinoma (HCC), cirrhosis, overall mortality, and liver-related mortality were determined. NASH required histological diagnosis. All studies were reviewed by three independent investigators. Analysis was stratified by region, diagnostic technique, biopsy indication, and study population. We used random-effects models to provide point estimates (95% confidence interval [CI]) of prevalence, incidence, mortality and incidence rate ratios, and metaregression with subgroup analysis to account for heterogeneity. Of 729 studies, 86 were included with a sample size of 8,515,431 from 22 countries. Global prevalence of NAFLD is 25.24% (95% CI: 22.10-28.65) with highest prevalence in the Middle East and South America and lowest in Africa. Metabolic comorbidities associated with NAFLD included obesity (51.34%; 95% CI: 41.38-61.20), type 2 diabetes (22.51%; 95% CI: 17.92-27.89), hyperlipidemia (69.16%; 95% CI: 49.91-83.46%), hypertension (39.34%; 95% CI: 33.15-45.88), and metabolic syndrome (42.54%; 95% CI: 30.06-56.05). Fibrosis progression proportion, and mean annual rate of progression in NASH were 40.76% (95% CI: 34.69-47.13) and 0.09 (95% CI: 0.06-0.12). HCC incidence among NAFLD patients was 0.44 per 1,000 person-years (range, 0.29-0.66). Liver-specific mortality and overall mortality among NAFLD and NASH were 0.77 per 1,000 (range, 0.33-1.77) and 11.77 per 1,000 person-years (range, 7.10-19.53) and 15.44 per 1,000 (range, 11.72-20.34) and 25.56 per 1,000 person-years (range, 6.29-103.80). Incidence risk ratios for liver-specific and overall mortality for NAFLD were 1.94 (range, 1.28-2.92) and 1.05 (range, 0.70-1.56).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites.

            A compelling set of links between the composition of the gut microbiota, the host diet, and host physiology has emerged. Do these links reflect cause-and-effect relationships, and what might be their mechanistic basis? A growing body of work implicates microbially produced metabolites as crucial executors of diet-based microbial influence on the host. Here, we will review data supporting the diverse functional roles carried out by a major class of bacterial metabolites, the short-chain fatty acids (SCFAs). SCFAs can directly activate G-coupled-receptors, inhibit histone deacetylases, and serve as energy substrates. They thus affect various physiological processes and may contribute to health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases

              Ulcerative colitis (UC) and Crohn's disease (CD), collectively known as Inflammatory Bowel Diseases (IBD), are caused by a complex interplay between genetic, immunologic, microbial and environmental factors. Dysbiosis of the gut microbiome is increasingly considered to be causatively related to IBD and is strongly affected by components of a Western life style. Bacteria that ferment fibers and produce short chain fatty acids (SCFAs) are typically reduced in mucosa and feces of patients with IBD, as compared to healthy individuals. SCFAs, such as acetate, propionate and butyrate, are important metabolites in maintaining intestinal homeostasis. Several studies have indeed shown that fecal SCFAs levels are reduced in active IBD. SCFAs are an important fuel for intestinal epithelial cells and are known to strengthen the gut barrier function. Recent findings, however, show that SCFAs, and in particular butyrate, also have important immunomodulatory functions. Absorption of SCFAs is facilitated by substrate transporters like MCT1 and SMCT1 to promote cellular metabolism. Moreover, SCFAs may signal through cell surface G-protein coupled receptors (GPCRs), like GPR41, GPR43, and GPR109A, to activate signaling cascades that control immune functions. Transgenic mouse models support the key role of these GPCRs in controlling intestinal inflammation. Here, we present an overview of microbial SCFAs production and their effects on the intestinal mucosa with specific emphasis on their relevance for IBD. Moreover, we discuss the therapeutic potential of SCFAs for IBD, either applied directly or by stimulating SCFAs-producing bacteria through pre- or probiotic approaches.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                12 December 2022
                2022
                : 13
                : 1001778
                Affiliations
                [1] 1School of Graduate, Beijing University of Chinese Medicine , Beijing, China
                [2] 2Dongfang Hospital, Beijing University of Chinese Medicine , Beijing, China
                Author notes

                Edited by: Weiqi He, Soochow University, China

                Reviewed by: Wuyang Huang, Jiangsu Academy of Agricultural Sciences, China; Jiajia Song, Southwest University, China; Wei Chen, Gan &Lee Pharmaceuticals, China

                *Correspondence: Junxiang Li, lijunxiang1226@ 123456163.com Haixiao Han hujiaofen@ 123456163.com

                This article was submitted to Microorganisms in Vertebrate Digestive Systems, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2022.1001778
                9791106
                36578580
                02f039f2-872c-4f8b-a78f-a2a5d1f097c6
                Copyright © 2022 Jiang, Mao, Sun, Shi, Han, Zhang, Zhang, Wang, Hu, Zhang, Li and Han.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 24 July 2022
                : 30 November 2022
                Page count
                Figures: 9, Tables: 1, Equations: 0, References: 73, Pages: 19, Words: 11576
                Funding
                Funded by: Beijing Natural Science Foundation , doi 10.13039/501100004826;
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                nonalcoholic fatty liver disease,yinchen linggui zhugan decoction,gut microbiota,metabolites,short-chain fatty acids,spearman rank correlation analysis

                Comments

                Comment on this article