3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Understanding the accessory viral proteins unique to the severe acute respiratory syndrome (SARS) coronavirus

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel coronavirus, termed the severe acute respiratory syndrome coronavirus (SARS-CoV), infected humans in Guangdong, China, in November 2002 and the subsequent efficient human-to-human transmissions of this virus caused profound disturbances in over 30 countries worldwide in 2003. Eventually, this epidemic was controlled by isolation and there has been no human infection reported since January 2004. However, research on different aspects of the SARS-CoV is not waning, as it is not known if this virus will re-emerge, especially since its origins and potential reservoir(s) are unresolved. The SARS-CoV genome is nearly 30 kb in length and contains 14 potential open reading frames (ORFs). Some of these ORFs encode for genes that are homologous to proteins found in all known coronaviruses, namely the replicase genes (ORFs 1a and 1b) and the four structural proteins: nucleocapsid, spike, membrane and envelope, and these proteins are expected to be essential for the replication of the virus. The remaining eight ORFs encodes for accessory proteins, varying in length from 39 to 274 amino acids, which are unique to SARS-CoV. This review will summarize the expeditious research on these accessory viral proteins in three major areas: (i) the detection of antibodies against accessory proteins in the serum of infected patients, (ii) the expression, processing and cellular localization of the accessory proteins, and (iii) the effects of the accessory proteins on cellular functions. These in-depth molecular and biochemical characterizations of the SARS-CoV accessory proteins, which have no homologues in other coronaviruses, may offer clues as to why the SARS-CoV causes such a severe and rapid attack in humans, while other coronaviruses that infect humans seem to be more forgiving.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization of a novel coronavirus associated with severe acute respiratory syndrome.

          P Rota (2003)
          In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China.

            Y Guan (2003)
            A novel coronavirus (SCoV) is the etiological agent of severe acute respiratory syndrome (SARS). SCoV-like viruses were isolated from Himalayan palm civets found in a live-animal market in Guangdong, China. Evidence of virus infection was also detected in other animals (including a raccoon dog, Nyctereutes procyonoides) and in humans working at the same market. All the animal isolates retain a 29-nucleotide sequence that is not found in most human isolates. The detection of SCoV-like viruses in small, live wild mammals in a retail market indicates a route of interspecies transmission, although the natural reservoir is not known.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats.

              Although the finding of severe acute respiratory syndrome coronavirus (SARS-CoV) in caged palm civets from live animal markets in China has provided evidence for interspecies transmission in the genesis of the SARS epidemic, subsequent studies suggested that the civet may have served only as an amplification host for SARS-CoV. In a surveillance study for CoV in noncaged animals from the wild areas of the Hong Kong Special Administration Region, we identified a CoV closely related to SARS-CoV (bat-SARS-CoV) from 23 (39%) of 59 anal swabs of wild Chinese horseshoe bats (Rhinolophus sinicus) by using RT-PCR. Sequencing and analysis of three bat-SARS-CoV genomes from samples collected at different dates showed that bat-SARS-CoV is closely related to SARS-CoV from humans and civets. Phylogenetic analysis showed that bat-SARS-CoV formed a distinct cluster with SARS-CoV as group 2b CoV, distantly related to known group 2 CoV. Most differences between the bat-SARS-CoV and SARS-CoV genomes were observed in the spike genes, ORF 3 and ORF 8, which are the regions where most variations also were observed between human and civet SARS-CoV genomes. In addition, the presence of a 29-bp insertion in ORF 8 of bat-SARS-CoV genome, not in most human SARS-CoV genomes, suggests that it has a common ancestor with civet SARS-CoV. Antibody against recombinant bat-SARS-CoV nucleocapsid protein was detected in 84% of Chinese horseshoe bats by using an enzyme immunoassay. Neutralizing antibody to human SARS-CoV also was detected in bats with lower viral loads. Precautions should be exercised in the handling of these animals.
                Bookmark

                Author and article information

                Contributors
                Journal
                Antiviral Res
                Antiviral Res
                Antiviral Research
                Elsevier B.V.
                0166-3542
                1872-9096
                6 June 2006
                November 2006
                6 June 2006
                : 72
                : 2
                : 78-88
                Affiliations
                Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
                Author notes
                [* ]Corresponding author. Tel.: +65 65869625; fax: +65 67791117. mcbtanyj@ 123456imcb.a-star.edu.sg
                Article
                S0166-3542(06)00158-6
                10.1016/j.antiviral.2006.05.010
                7114237
                16820226
                02f53fa3-1830-4462-810a-491554b1a997
                Copyright © 2006 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 24 March 2006
                : 15 May 2006
                Categories
                Article

                Infectious disease & Microbiology
                severe acute respiratory syndrome (sars),coronavirus,accessory viral proteins,virus–virus interactions,virus–host interactions

                Comments

                Comment on this article