14
views
0
recommends
+1 Recommend
0 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multiplexed Electrochemical Immunosensors for Clinical Biomarkers

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Management and prognosis of disease requires the accurate determination of specific biomarkers indicative of normal or disease-related biological processes or responses to therapy. Moreover since multiple determinations of biomarkers have demonstrated to provide more accurate information than individual determinations to assist the clinician in prognosis and diagnosis, the detection of several clinical biomarkers by using the same analytical device hold enormous potential for early detection and personalized therapy and will simplify the diagnosis providing more information in less time. In this field, electrochemical immunosensors have demonstrated to offer interesting alternatives against conventional strategies due to their simplicity, fast response, low cost, high sensitivity and compatibility with multiplexed determination, microfabrication technology and decentralized determinations, features which made them very attractive for integration in point-of-care (POC) devices. Therefore, in this review, the relevance and current challenges of multiplexed determination of clinical biomarkers are briefly introduced, and an overview of the electrochemical immunosensing platforms developed so far for this purpose is given in order to demonstrate the great potential of these methodologies. After highlighting the main features of the selected examples, the unsolved challenges and future directions in this field are also briefly discussed.

          Related collections

          Most cited references94

          • Record: found
          • Abstract: found
          • Article: not found

          Electrochemical biosensors: towards point-of-care cancer diagnostics.

          Wide-scale point-of-care diagnostic systems hold great promise for early detection of cancer at a curable stage of the disease. This review discusses the prospects and challenges of electrochemical biosensors for next-generation cancer diagnostics. Electrochemical biosensors have played an important significant role in the transition towards point-of-care diagnostic devices. Such electrical devices are extremely useful for delivering the diagnostic information in a fast, simple, and low cost fashion in connection to compact (hand-held) analyzers. Modern electrochemical bioaffinity sensors, such as DNA- or immunosensors, offer remarkable sensitivity essential for early cancer detection. The coupling of electrochemical devices with nanoscale materials offers a unique multiplexing capability for simultaneous measurements of multiple cancer markers. The attractive properties of electrochemical devices are extremely promising for improving the efficiency of cancer diagnostics and therapy monitoring. With further development and resources, such portable devices are expected to speed up the diagnosis of cancer, making analytical results available at patient bedside or physician office within few minutes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DNA damage activates p53 through a phosphorylation-acetylation cascade.

            Activation of p53-mediated transcription is a critical cellular response to DNA damage. p53 stability and site-specific DNA-binding activity and, therefore, transcriptional activity, are modulated by post-translational modifications including phosphorylation and acetylation. Here we show that p53 is acetylated in vitro at separate sites by two different histone acetyltransferases (HATs), the coactivators p300 and PCAF. p300 acetylates Lys-382 in the carboxy-terminal region of p53, whereas PCAF acetylates Lys-320 in the nuclear localization signal. Acetylations at either site enhance sequence-specific DNA binding. Using a polyclonal antisera specific for p53 that is phosphorylated or acetylated at specific residues, we show that Lys-382 of human p53 becomes acetylated and Ser-33 and Ser-37 become phosphorylated in vivo after exposing cells to UV light or ionizing radiation. In vitro, amino-terminal p53 peptides phosphorylated at Ser-33 and/or at Ser-37 differentially inhibited p53 acetylation by each HAT. These results suggest that DNA damage enhances p53 activity as a transcription factor in part through carboxy-terminal acetylation that, in turn, is directed by amino-terminal phosphorylation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective

              Elevation of the proinflammatory cytokine Interleukin-1 (IL-1) is an integral part of the local tissue reaction to central nervous system (CNS) insult. The discovery of increased IL-1 levels in patients following acute injury and in chronic neurodegenerative disease laid the foundation for two decades of research that has provided important details regarding IL-1's biology and function in the CNS. IL-1 elevation is now recognized as a critical component of the brain's patterned response to insults, termed neuroinflammation, and of leukocyte recruitment to the CNS. These processes are believed to underlie IL-1's function in the setting of acute brain injury, where it has been ascribed potential roles in repair as well as in exacerbation of damage. Explorations of IL-1's role in chronic neurodegenerative disease have mainly focused on Alzheimer disease (AD), where indirect evidence has implicated it in disease pathogenesis. However, recent observations in animal models challenge earlier assumptions that IL-1 elevation and resulting neuroinflammatory processes play a purely detrimental role in AD, and prompt a need for new characterizations of IL-1 function. Potentially adaptive functions of IL-1 elevation in AD warrant further mechanistic studies, and provide evidence that enhancement of these effects may help to alleviate the pathologic burden of disease.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Role: Academic Editor
                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                27 April 2017
                May 2017
                : 17
                : 5
                : 965
                Affiliations
                Departamento de Química Analítica, Facultad de CC. Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; susanacr@ 123456quim.ucm.es (S.C.); pingarro@ 123456quim.ucm.es (J.M.P.)
                Author notes
                [* ]Correspondence: yseo@ 123456quim.ucm.es ; Tel.: +34-91-394-4317
                Article
                sensors-17-00965
                10.3390/s17050965
                5464191
                28448466
                03037067-8810-4523-b81e-212831f10a68
                © 2017 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 09 March 2017
                : 24 April 2017
                Categories
                Review

                Biomedical engineering
                multiplexed electrochemical immunosensors,biomarkers,cancer,cardiovascular,microfluidic,paper electrodes

                Comments

                Comment on this article