17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Synthetic biodegradable functional polymers for tissue engineering: a brief review

      ,
      Science China Chemistry
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: not found
          • Article: not found

          Biodegradable polymers as biomaterials

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydrogels in regenerative medicine.

            Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biomimetic materials for tissue engineering.

              Peter Ma (2008)
              Tissue engineering and regenerative medicine is an exciting research area that aims at regenerative alternatives to harvested tissues for transplantation. Biomaterials play a pivotal role as scaffolds to provide three-dimensional templates and synthetic extracellular matrix environments for tissue regeneration. It is often beneficial for the scaffolds to mimic certain advantageous characteristics of the natural extracellular matrix, or developmental or wound healing programs. This article reviews current biomimetic materials approaches in tissue engineering. These include synthesis to achieve certain compositions or properties similar to those of the extracellular matrix, novel processing technologies to achieve structural features mimicking the extracellular matrix on various levels, approaches to emulate cell-extracellular matrix interactions, and biologic delivery strategies to recapitulate a signaling cascade or developmental/wound healing program. The article also provides examples of enhanced cellular/tissue functions and regenerative outcomes, demonstrating the excitement and significance of the biomimetic materials for tissue engineering and regeneration.
                Bookmark

                Author and article information

                Journal
                Science China Chemistry
                Sci. China Chem.
                Springer Nature
                1674-7291
                1869-1870
                April 2014
                March 1 2014
                : 57
                : 4
                : 490-500
                Article
                10.1007/s11426-014-5086-y
                25729390
                0304ad2d-2052-40f0-b24b-b66e49dd5646
                © 2014
                History

                Comments

                Comment on this article