91
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      MEC-17 is an α-tubulin acetyltransferase

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          SUMMARY

          In most eukaryotic cells, subsets of microtubules are adapted for specific functions by post-translational modifications (PTMs) of tubulin subunits. Acetylation of the ε-amino group of K40 on α-tubulin is a conserved PTM on the luminal side of microtubules 1 that was discovered in the flagella of Chlamydomonas reinhardtii 2, 3. Studies on the significance of microtubule acetylation have been limited by the undefined status of the α-tubulin acetyltransferase. Here, we show that MEC-17, a protein related to the Gcn5 histone acetyltransferases 4 and required for the function of touch receptor neurons in C. elegans 5, 6, acts as a K40-specific acetyltransferase for α-tubulin. In vitro, MEC-17 exclusively acetylates K40 of α-tubulin. Disruption of the Tetrahymena MEC-17 gene phenocopies the K40R α-tubulin mutation and makes microtubules more labile. Depletion of MEC-17 in zebrafish produces phenotypes consistent with neuromuscular defects. In C. elegans, MEC-17 and its paralog W06B11.1 are redundantly required for acetylation of MEC-12 α-tubulin, and contribute to the function of touch receptor neurons partly via MEC-12 acetylation and partly via another function, possibly by acetylating another protein. In summary, we identify MEC-17 as an enzyme that acetylates the K40 residue of α-tubulin, the only PTM known to occur on the luminal surface of microtubules.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Single-copy insertion of transgenes in Caenorhabditis elegans.

          At present, transgenes in Caenorhabditis elegans are generated by injecting DNA into the germline. The DNA assembles into a semistable extrachromosomal array composed of many copies of injected DNA. These transgenes are typically overexpressed in somatic cells and silenced in the germline. We have developed a method that inserts a single copy of a transgene into a defined site. Mobilization of a Mos1 transposon generates a double-strand break in noncoding DNA. The break is repaired by copying DNA from an extrachromosomal template into the chromosomal site. Homozygous single-copy insertions can be obtained in less than 2 weeks by injecting approximately 20 worms. We have successfully inserted transgenes as long as 9 kb and verified that single copies are inserted at the targeted site. Single-copy transgenes are expressed at endogenous levels and can be expressed in the female and male germlines.
            • Record: found
            • Abstract: found
            • Article: not found

            Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation.

            A defect in microtubule (MT)-based transport contributes to the neuronal toxicity observed in Huntington's disease (HD). Histone deacetylase (HDAC) inhibitors show neuroprotective effects in this devastating neurodegenerative disorder. We report here that HDAC inhibitors, including trichostatin A (TSA), increase vesicular transport of brain-derived neurotrophic factor (BDNF) by inhibiting HDAC6, thereby increasing acetylation at lysine 40 of alpha-tubulin. MT acetylation in vitro and in cells causes the recruitment of the molecular motors dynein and kinesin-1 to MTs. In neurons, acetylation at lysine 40 of alpha-tubulin increases the flux of vesicles and the subsequent release of BDNF. We show that tubulin acetylation is reduced in HD brains and that TSA compensates for the transport- and release-defect phenotypes that are observed in disease. Our findings reveal that HDAC6 inhibition and acetylation at lysine 40 of alpha-tubulin may be therapeutic targets of interest in disorders such as HD in which intracellular transport is altered.
              • Record: found
              • Abstract: found
              • Article: not found

              Microtubule stabilization specifies initial neuronal polarization

              Axon formation is the initial step in establishing neuronal polarity. We examine here the role of microtubule dynamics in neuronal polarization using hippocampal neurons in culture. We see increased microtubule stability along the shaft in a single neurite before axon formation and in the axon of morphologically polarized cells. Loss of polarity or formation of multiple axons after manipulation of neuronal polarity regulators, synapses of amphids defective (SAD) kinases, and glycogen synthase kinase-3β correlates with characteristic changes in microtubule turnover. Consistently, changing the microtubule dynamics is sufficient to alter neuronal polarization. Application of low doses of the microtubule-destabilizing drug nocodazole selectively reduces the formation of future dendrites. Conversely, low doses of the microtubule-stabilizing drug taxol shift polymerizing microtubules from neurite shafts to process tips and lead to the formation of multiple axons. Finally, local stabilization of microtubules using a photoactivatable analogue of taxol induces axon formation from the activated area. Thus, local microtubule stabilization in one neurite is a physiological signal specifying neuronal polarization.

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                0028-0836
                1476-4687
                2 August 2010
                9 September 2010
                9 March 2011
                : 467
                : 7312
                : 218-222
                Affiliations
                [1 ]Department of Cellular Biology, University of Georgia, Athens, GA 30602.
                [2 ]Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697.
                Author notes
                [*]

                These authors have contributed equally

                [# ]Corresponding author: jgaertig@ 123456cb.uga.edu
                Article
                nihpa219265
                10.1038/nature09324
                2938957
                20829795
                030a6370-99ac-4e5d-8847-c7a320b721bc

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of General Medical Sciences : NIGMS
                Funded by: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
                Award ID: R01 GM089912-01 ||GM
                Funded by: National Institute of General Medical Sciences : NIGMS
                Funded by: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
                Award ID: R01 GM074212-03 ||GM
                Funded by: National Institute of General Medical Sciences : NIGMS
                Funded by: National Institute of Allergy and Infectious Diseases Extramural Activities : NIAID
                Award ID: R01 AI067981-05 ||AI
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                Related Documents Log