7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Factors Involved in the Persistence of a Shiga Toxin-Producing Escherichia coli O157:H7 Strain in Bovine Feces and Gastro-Intestinal Content

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Healthy cattle are the primary reservoir for O157:H7 Shiga toxin-producing E. coli responsible for human food-borne infections. Because farm environment acts as a source of cattle contamination, it is important to better understand the factors controlling the persistence of E. coli O157:H7 outside the bovine gut. The E. coli O157:H7 strain MC2, identified as a persistent strain in French farms, possessed the characteristics required to cause human infections and genetic markers associated with clinical O157:H7 isolates. Therefore, the capacity of E. coli MC2 to survive during its transit through the bovine gastro-intestinal tract (GIT) and to respond to stresses potentially encountered in extra-intestinal environments was analyzed. E. coli MC2 survived in rumen fluids, grew in the content of posterior digestive compartments and survived in bovine feces at 15°C predicting a successful transit of the bacteria along the bovine GIT and its persistence outside the bovine intestine. E. coli MC2 possessed the genetic information encoding 14 adherence systems including adhesins with properties related to colonization of the bovine intestine (F9 fimbriae, EhaA and EspP autotransporters, HCP pilus, FdeC adhesin) reflecting the capacity of the bacteria to colonize different segments of the bovine GIT. E. coli MC2 was also a strong biofilm producer when incubated in fecal samples at low temperature and had a greater ability to form biofilms than the bovine commensal E. coli strain BG1. Furthermore, in contrast to BG1, E. coli MC2 responded to temperature stresses by inducing the genes cspA and htrA during its survival in bovine feces at 15°C. E. coli MC2 also activated genes that are part of the GhoT/GhoS, HicA/HicB and EcnB/EcnA toxin/antitoxin systems involved in the response of E. coli to nutrient starvation and chemical stresses. In summary, the large number of colonization factors known to bind to intestinal epithelium and to biotic or abiotic surfaces, the capacity to produce biofilms and to activate stress fitness genes in bovine feces could explain the persistence of E. coli MC2 in the farm environment.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          Diarrheagenic Escherichia coli.

          Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler's diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (entero-pathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein.

            Misfolding or unfolding of polypeptides can occur as a consequence of environmental stress and spontaneous mutation. The abundance of general chaperones and proteases suggests that cells distinguish between proteins that can be refolded and "hopeless" cases fated to enter the proteolytic pathway. The mechanisms controlling this key metabolic decision are not well understood. We show here that the widely conserved heat shock protein DegP (HtrA) has both general molecular chaperone and proteolytic activities. The chaperone function dominates at low temperatures, while the proteolytic activity is present at elevated temperatures. These results show that a single cellular factor can switch between two key pathways, controlling protein stability and turnover. Implications of this finding for intracellular protein metabolism are discussed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HicA of Escherichia coli defines a novel family of translation-independent mRNA interferases in bacteria and archaea.

              Toxin-antitoxin (TA) loci are common in free-living bacteria and archaea. TA loci encode a stable toxin that is neutralized by a metabolically unstable antitoxin. The antitoxin can be either a protein or an antisense RNA. So far, six different TA gene families, in which the antitoxins are proteins, have been identified. Recently, Makarova et al. (K. S. Makarova, N. V. Grishin, and E. V. Koonin, Bioinformatics 22:2581-2584, 2006) suggested that the hicAB loci constitute a novel TA gene family. Using the hicAB locus of Escherichia coli K-12 as a model system, we present evidence that supports this inference: expression of the small HicA protein (58 amino acids [aa]) induced cleavage in three model mRNAs and tmRNA. Concomitantly, the global rate of translation was severely reduced. Using tmRNA as a substrate, we show that HicA-induced cleavage does not require the target RNA to be translated. Expression of HicB (145 aa) prevented HicA-mediated inhibition of cell growth. These results suggest that HicB neutralizes HicA and therefore functions as an antitoxin. As with other antitoxins (RelB and MazF), HicB could resuscitate cells inhibited by HicA, indicating that ectopic production of HicA induces a bacteriostatic rather than a bactericidal condition. Nutrient starvation induced strong hicAB transcription that depended on Lon protease. Mining of 218 prokaryotic genomes revealed that hicAB loci are abundant in bacteria and archaea.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                09 March 2018
                2018
                : 9
                : 375
                Affiliations
                [1] 1Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne , Clermont-Ferrand, France
                [2] 2IRSD, Institut National de la Santé Et de la Recherche Médicale, Institut National de la Recherche Agronomique, ENVT, UPS, Université de Toulouse , Toulouse, France
                Author notes

                Edited by: Satoshi Tsuneda, Waseda University, Japan

                Reviewed by: Eelco Franz, Centre for Infectious Disease Control (RIVM), Netherlands; Adriana Bentancor, Universidad de Buenos Aires, Argentina; Joseph M. Bosilevac, USDA-Agricultural Research Service (ARS) U.S. Meat Animal Research Center, United States

                *Correspondence: Evelyne Forano evelyne.forano@ 123456inra.fr

                This article was submitted to Microbial Physiology and Metabolism, a section of the journal Frontiers in Microbiology

                †Present Address: Pauline Auffret, Unité Ressources Marines en Polynésie Française (RMPF), Département Ressources Biologiques et Environnement, Centre Ifremer du Pacifique, Tahiti, French Polynesia

                Marine Bertoni, Laboratoire de Police Scientifique de Marseille, Section Biologie, Institut National de Police Scientifique, Marseille, France

                Article
                10.3389/fmicb.2018.00375
                5854682
                29593666
                032a1d7d-0de0-4d71-a4fa-6c4333eba231
                Copyright © 2018 Segura, Auffret, Bibbal, Bertoni, Durand, Jubelin, Kérourédan, Brugère, Bertin and Forano.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 December 2017
                : 19 February 2018
                Page count
                Figures: 5, Tables: 2, Equations: 0, References: 84, Pages: 14, Words: 11671
                Funding
                Funded by: Ministère de l'Agriculture, de l'Agroalimentaire et de la Forêt 10.13039/501100003198
                Funded by: Conseil Régional d'Auvergne 10.13039/501100004962
                Funded by: Institut National de la Recherche Agronomique 10.13039/501100006488
                Award ID: 23000731
                Funded by: France Agrimer
                Award ID: EDP 74 0914000451
                Funded by: Compte d'Affectation Spéciale Développement Agricole et Rural
                Award ID: CASDAR 73
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                escherichia coli,stec,ehec,o157:h7,biofilms,stress response,persistence
                Microbiology & Virology
                escherichia coli, stec, ehec, o157:h7, biofilms, stress response, persistence

                Comments

                Comment on this article