213
views
0
recommends
+1 Recommend
0 collections
    10
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent advances in 3D printing of biomaterials

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          3D Printing promises to produce complex biomedical devices according to computer design using patient-specific anatomical data. Since its initial use as pre-surgical visualization models and tooling molds, 3D Printing has slowly evolved to create one-of-a-kind devices, implants, scaffolds for tissue engineering, diagnostic platforms, and drug delivery systems. Fueled by the recent explosion in public interest and access to affordable printers, there is renewed interest to combine stem cells with custom 3D scaffolds for personalized regenerative medicine. Before 3D Printing can be used routinely for the regeneration of complex tissues (e.g. bone, cartilage, muscles, vessels, nerves in the craniomaxillofacial complex), and complex organs with intricate 3D microarchitecture (e.g. liver, lymphoid organs), several technological limitations must be addressed. In this review, the major materials and technology advances within the last five years for each of the common 3D Printing technologies (Three Dimensional Printing, Fused Deposition Modeling, Selective Laser Sintering, Stereolithography, and 3D Plotting/Direct-Write/Bioprinting) are described. Examples are highlighted to illustrate progress of each technology in tissue engineering, and key limitations are identified to motivate future research and advance this fascinating field of advanced manufacturing.

          Related collections

          Most cited references 166

          • Record: found
          • Abstract: found
          • Article: not found

          Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering.

          Polycaprolactone (PCL) is a bioresorbable polymer with potential applications for bone and cartilage repair. In this work, porous PCL scaffolds were computationally designed and then fabricated via selective laser sintering (SLS), a rapid prototyping technique. The microstructure and mechanical properties of the fabricated scaffolds were assessed and compared to the designed porous architectures and computationally predicted properties. Scaffolds were then seeded with bone morphogenetic protein-7 (BMP-7) transduced fibroblasts and implanted subcutaneously to evaluate biological properties and to demonstrate tissue in-growth. The work done illustrates the ability to design and fabricate PCL scaffolds with porous architecture that have sufficient mechanical properties for bone tissue engineering applications using SLS. Compressive modulus and yield strength values ranged from 52 to 67 MPa and 2.0 to 3.2 Mpa, respectively, lying within the lower range of properties reported for human trabecular bone. Finite element analysis (FEA) results showed that mechanical properties of scaffold designs and of fabricated scaffolds can be computationally predicted. Histological evaluation and micro-computed tomography (microCT) analysis of implanted scaffolds showed that bone can be generated in vivo. Finally, to demonstrate the clinical application of this technology, we designed and fabricated a prototype mandibular condyle scaffold based on an actual pig condyle. The integration of scaffold computational design and free-form fabrication techniques presented here could prove highly useful for the construction of scaffolds that have anatomy specific exterior architecture derived from patient CT or MRI data and an interior porous architecture derived from computational design optimization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling.

            A number of different processing techniques have been developed to design and fabricate three-dimensional (3D) scaffolds for tissue-engineering applications. The imperfection of the current techniques has encouraged the use of a rapid prototyping technology known as fused deposition modeling (FDM). Our results show that FDM allows the design and fabrication of highly reproducible bioresorbable 3D scaffolds with a fully interconnected pore network. The mechanical properties and in vitro biocompatibility of polycaprolactone scaffolds with a porosity of 61 +/- 1% and two matrix architectures were studied. The honeycomb-like pores had a size falling within the range of 360 x 430 x 620 microm. The scaffolds with a 0/60/120 degrees lay-down pattern had a compressive stiffness and a 1% offset yield strength in air of 41.9 +/- 3.5 and 3.1 +/- 0.1 MPa, respectively, and a compressive stiffness and a 1% offset yield strength in simulated physiological conditions (a saline solution at 37 degrees C) of 29.4 +/- 4.0 and 2.3 +/- 0.2 MPa, respectively. In comparison, the scaffolds with a 0/72/144/36/108 degrees lay-down pattern had a compressive stiffness and a 1% offset yield strength in air of 20.2 +/- 1.7 and 2.4 +/- 0.1 MPa, respectively, and a compressive stiffness and a 1% offset yield strength in simulated physiological conditions (a saline solution at 37 degrees C) of 21.5 +/- 2.9 and 2.0 +/- 0.2 MPa, respectively. Statistical analysis confirmed that the five-angle scaffolds had significantly lower stiffness and 1% offset yield strengths under compression loading than those with a three-angle pattern under both testing conditions (p < or = 0.05). The obtained stress-strain curves for both scaffold architectures demonstrate the typical behavior of a honeycomb structure undergoing deformation. In vitro studies were conducted with primary human fibroblasts and periosteal cells. Light, environmental scanning electron, and confocal laser microscopy as well as immunohistochemistry showed cell proliferation and extracellular matrix production on the polycaprolactone surface in the 1st culturing week. Over a period of 3-4 weeks in a culture, the fully interconnected scaffold architecture was completely 3D-filled by cellular tissue. Our cell culture study shows that fibroblasts and osteoblast-like cells can proliferate, differentiate, and produce a cellular tissue in an entirely interconnected 3D polycaprolactone matrix. Copyright 2001 John Wiley & Sons, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inkjet printing of viable mammalian cells.

              The purpose of this study was to explore the use of a commercial thermal printer to deposit Chinese Hamster Ovary (CHO) and embryonic motoneuron cells into pre-defined patterns. These experiments were undertaken to verify the biocompatibility of thermal inkjet printing of mammalian cells and the ability to assemble them into viable constructs. Using a modified Hewlett Packard (HP) 550C computer printer and an HP 51626a ink cartridge, CHO cells and rat embryonic motoneurons were suspended separately in a concentrated phosphate buffered saline solution (3 x). The cells were subsequently printed as a kind of "ink" onto several "bio-papers" made from soy agar and collagen gel. The appearance of the CHO cells and motoneurons on the bio-papers indicated an healthy cell morphology. Furthermore, the analyses of the CHO cell viability showed that less than 8% of the cells were lysed during printing. These data indicate that mammalian cells can be effectively delivered by a modified thermal inkjet printer onto biological substrates and that they retain their ability to function. The computer-aided inkjet printing of viable mammalian cells holds potential for creating living tissue analogs, and may eventually lead to the construction of engineered human organs. Copyright 2004 Elsevier Ltd.
                Bookmark

                Author and article information

                Contributors
                hchia@ucla.edu
                benwu@ucla.edu
                Journal
                J Biol Eng
                J Biol Eng
                Journal of Biological Engineering
                BioMed Central (London )
                1754-1611
                1 March 2015
                1 March 2015
                2015
                : 9
                Affiliations
                [ ]Department of Bioengineering, Henry Samueli School of Engineering, University of California, 5121 Engineering V, Los Angeles, CA 90095 USA
                [ ]Department of Materials Science and Engineering, Henry Samueli School of Engineering, University of California, Los Angeles, CA 90095 USA
                [ ]Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095 USA
                [ ]Department of Orthopedic Surgery, School of Medicine, University of California, Los Angeles, CA 90095 USA
                Article
                1
                10.1186/s13036-015-0001-4
                4392469
                25866560
                © Chia and Wu; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Categories
                Review
                Custom metadata
                © The Author(s) 2015

                Comments

                Comment on this article