Blog
About

12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Binding of herpes simplex virus-1 US11 to specific RNA sequences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Herpes simplex virus-1 US11 is a RNA-binding protein with a novel RNA-binding domain. US11 has been reported to exhibit sequence- and conformation-specific RNA-binding, but the sequences and conformations important for binding are not known. US11 has also been described as a double-stranded RNA (dsRNA)-binding protein. To investigate the US11–RNA interaction, we performed in vitro selection of RNA aptamers that bind US11 from a RNA library consisting of >10 14 80 base sequences which differ in a 30 base randomized region. US11 bound specifically to selected aptamers with an affinity of 70 nM. Analysis of 23 selected sequences revealed a strong consensus sequence. The US11 RNA-binding domain and ≤46 bases of selected RNA containing the consensus sequence were each sufficient for binding. US11 binding protected the consensus motif from hydroxyl radical cleavage. RNase digestions of a selected aptamer revealed regions of both single-stranded RNA and dsRNA. We observed that US11 bound two different dsRNAs in a sequence non-specific manner, but with lower affinity than it bound selected aptamers. The results define a relatively short specific sequence that binds US11 with high affinity and indicate that dsRNA alone does not confer high-affinity binding.

          Related collections

          Most cited references 26

          • Record: found
          • Abstract: found
          • Article: not found

          Automated selection of anti-protein aptamers.

          The in vitro selection of nucleic acid binding species (aptamers) is frequently repetitive, time-consuming, and poorly adapted to high-throughput applications. We have adapted automated workstations to select anti-protein aptamers; as an example, we demonstrated the selection of anti-lysozyme aptamers that function as efficient inhibitors of cell lysis. The increases in throughput brought about by automation should potentiate the application of aptamer technology to the rapidly growing field of proteomics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus.

            Herpes simplex virus establishes latency in nervous tissue in which it is maintained for the life of the mammalian host, with occasional reactivation leading to subsequent spread. Latency-associated transcripts are abundant during latency, but viral proteins and productive cycle RNAs have not been detected. Using sensitive, quantitative PCR assays, we have quantified certain viral RNAs specific to productive-cycle genes in mouse ganglia latently infected with herpes simplex virus type 1. Sense-strand RNA specific to the essential immediate-early gene, ICP4, was present in most ganglia in variable amounts relative to the amount of viral DNA, with one to seven molecules of RNA per viral genome in about 20% of ganglia. In contrast, the amount of latency-associated transcripts was much less variable, at an average of 4 x 10(4) molecules per viral genome. The amounts of ICP4-specific RNA were similar at 30 and 60 days postinfection, and at least some of these transcripts initiated within a region consistent with utilization of the ICP4 promoter. RNA specific to the thymidine kinase gene, whose transcription in productive infection is dependent on ICP4, was present in latently infected ganglia at a maximum level of 3.2 x 10(6) molecules per ganglion (500 molecules per viral genome). ICP4-specific and tk-specific RNAs measured from the same samples showed a positive correlation extending over 2 orders of magnitude. We conclude that ICP4-specific RNA is expressed in the absence of detectable reactivation and discuss possible implications of our findings for latent gene expression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain.

              Little is known about the mechanisms of transport of neurotropic herpesviruses, such as herpes simplex virus (HSV), varicella-zoster virus, and pseudorabies virus, within neurons. For these viruses, which replicate in the nucleus, anterograde transport from the cell body of dorsal root ganglion (DRG) neurons to the axon terminus occurs over long distances. In the case of HSV, unenveloped nucleocapsids in human DRG neurons cocultured with autologous skin were observed by immunoelectron microscopy to colocalize with conventional ubiquitous kinesin, a microtubule-dependent motor protein, in the cell body and axon during anterograde axonal transport. Subsequently, four candidate kinesin-binding structural HSV proteins were identified (VP5, VP16, VP22, and US11) using oligohistidine-tagged human ubiquitous kinesin heavy chain (uKHC) as bait. Of these viral proteins, a direct interaction between uKHC and US11 was identified. In vitro studies identified residues 867 to 894 as the US11-binding site in uKHC located within the proposed heptad repeat cargo-binding domain of uKHC. In addition, the uKHC-binding site in US11 maps to the C-terminal RNA-binding domain. US11 is consistently cotransported with kinetics similar to those of the capsid protein VP5 into the axons of dissociated rat neurons, unlike the other tegument proteins VP16 and VP22. These observations suggest a major role for the uKHC-US11 interaction in anterograde transport of unenveloped HSV nucleocapsids in axons.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                2005
                2005
                24 October 2005
                : 33
                : 19
                : 6090-6100
                Affiliations
                1simpleDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School 250 Longwood Avenue, Boston, MA 02115, USA
                2simpleCommittee on Virology, Harvard Medical School 250 Longwood Avenue, Boston, MA 02115, USA
                3simpleDepartment of Chemistry and Biochemistry, University of Texas Austin, TX, USA
                Author notes
                *To whom correspondence should be addressed. Tel: +1 617 432 1691; Fax: +1 617 432 3833; Email: Don_Coen@ 123456hms.harvard.edu

                Present addresses: J. Colin Cox, Department of Biochemistry, Duke University Medical Center, Durham, NC, USA

                Hongming Wang, Pfizer Global Research and Development, Ann Arbor, MI, USA

                10.1093/nar/gki919
                1266072
                16246910
                © The Author 2005. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@ 123456oxfordjournals.org

                Categories
                Article

                Genetics

                Comments

                Comment on this article