15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of the Rho GTPase-Activating Protein RhoGAP68F

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rho small GTPases control multiple aspects of neuronal morphogenesis by regulating the assembly and organization of the actin cytoskeleton. Although they are negatively regulated by GTPase activating proteins (GAPs), the roles of RhoGAPs in the nervous system have not been fully investigated. Here we describe a characterization of Drosophila RhoGAP68F that is mainly expressed in the embryonic central nervous system. RNA in situ hybridization analysis showed that expression of RhoGAP68F is highly restricted to the embryonic brain and ventral nerve cord. Database search revealed that RhoGAP68F contains an N-terminal Sec14 domain and a C-terminal RhoGAP domain. Rho-GTP pull-down assay demonstrated that the RhoGAP domain of RhoGAP68F inactivates RhoA but not Rac1 or Cdc42 in HEK293 cells. In addition, expression of RhoGAP68F in NIH3T3 cells suppressed LPA-induced stress fiber formation, which is mediated by RhoA. Finally, neuronal overexpression of RhoGAP68F causes synaptic overgrowth at the larval neuromuscular junction (NMJ). Taken together, these results suggest that RhoGAP68F may play a role in synaptic growth regulation by inactivating RhoA.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          The role of the Rho GTPases in neuronal development.

          Our brain serves as a center for cognitive function and neurons within the brain relay and store information about our surroundings and experiences. Modulation of this complex neuronal circuitry allows us to process that information and respond appropriately. Proper development of neurons is therefore vital to the mental health of an individual, and perturbations in their signaling or morphology are likely to result in cognitive impairment. The development of a neuron requires a series of steps that begins with migration from its birth place and initiation of process outgrowth, and ultimately leads to differentiation and the formation of connections that allow it to communicate with appropriate targets. Over the past several years, it has become clear that the Rho family of GTPases and related molecules play an important role in various aspects of neuronal development, including neurite outgrowth and differentiation, axon pathfinding, and dendritic spine formation and maintenance. Given the importance of these molecules in these processes, it is therefore not surprising that mutations in genes encoding a number of regulators and effectors of the Rho GTPases have been associated with human neurological diseases. This review will focus on the role of the Rho GTPases and their associated signaling molecules throughout neuronal development and discuss how perturbations in Rho GTPase signaling may lead to cognitive disorders.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A stable genomic source of P element transposase in Drosophila melanogaster.

            A single P element insert in Drosophila melanogaster, called P[ry+ delta 2-3](99B), is described that caused mobilization of other elements at unusually high frequencies, yet is itself remarkably stable. Its transposase activity is higher than that of an entire P strain, but it rarely undergoes internal deletion, excision or transposition. This element was constructed by F. Laski, D. Rio and G. Rubin for other purposes, but we have found it to be useful for experiments involving P elements. We demonstrate that together with a chromosome bearing numerous nonautonomous elements it can be used for P element mutagenesis. It can also substitute efficiently for "helper" plasmids in P element mediated transformation, and can be used to move transformed elements around the genome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Improved stability of Drosophila larval neuromuscular preparations in haemolymph-like physiological solutions.

              Neuromuscular preparations from third instar larvae of Drosophila are not well-maintained in commonly used physiological solutions: vacuoles form in the muscle fibers, and membrane potential declines. These problems may result from the Na:K ratio and total divalent cation content of these physiological solutions being quite different from those of haemolymph. Accordingly haemolymph-like solutions, based upon ion measurements of major cations, were developed and tested. Haemolymph-like solutions maintained the membrane potential at a relatively constant level, and prolonged the physiological life of the preparations. Synaptic transmission was well-maintained in haemolymph-like solutions, but the excitatory synaptic potentials had a slower time course and summated more effectively with repetitive stimulation, than in standard Drosophila solutions. Voltage-clamp experiments suggest that these effects are linked to more pronounced activation of muscle fiber membrane conductances in standard solutions, rather than to differences in passive muscle membrane properties or changes in postsynaptic receptor channel kinetics. Calcium dependence of transmitter release was steep in both standard and haemolymph-like solutions, but higher external calcium concentrations were required for a given level of release in haemolymph-like solutions. Thus, haemolymph-like solutions allow for prolonged, stable recording of synaptic transmission.
                Bookmark

                Author and article information

                Journal
                Exp Neurobiol
                EN
                Experimental Neurobiology
                The Korean Society for Brain and Neural Science
                1226-2560
                2093-8144
                March 2011
                31 March 2011
                : 20
                : 1
                : 29-34
                Affiliations
                Department of Cell and Developmental Biology, Dental Research Institute, Seoul National University, Seoul 110-749, Korea.
                Author notes
                To whom correspondence should be addressed. TEL: 82-2-740-8685, FAX: 82-2-762-2583, seunglee@ 123456snu.ac.kr
                Article
                10.5607/en.2011.20.1.29
                3213737
                22110359
                0334ace9-548e-4781-bf76-1c06e57b6397
                Copyright © 2011 The Korean Society for Brain and Neural Science

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 03 January 2011
                : 24 January 2011
                Categories
                Original Article

                Neurosciences
                drosophila,f-actin,gap,rhoa,rhogap68f,nervous system
                Neurosciences
                drosophila, f-actin, gap, rhoa, rhogap68f, nervous system

                Comments

                Comment on this article