8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      In vivo antitumor activity of anti-CD3-induced activated killer cells.

      Cancer research
      Animals, Antibodies, Monoclonal, immunology, Antigens, CD3, Antigens, Differentiation, T-Lymphocyte, Cytotoxicity, Immunologic, Female, Immunotherapy, methods, Interleukin-2, pharmacology, Killer Cells, Natural, transplantation, Lymphocyte Activation, Mice, Mice, Inbred DBA, Neoplasm Transplantation, Neoplasms, Experimental, therapy, Phenotype, Receptors, Antigen, T-Cell, T-Lymphocytes, classification, Tumor Cells, Cultured

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study investigates the potential of the alpha CD3-induced killer cells for use in adoptive immunotherapy of tumor growth. The alpha CD3-induced, activated, killer cells (CD3-AK) were generated in DBA/2 (H-2d) splenocytes by preactivation with alpha CD3 and were then cultured in the presence (CD3-AK [alpha CD3+]) or absence (CD3-AK [alpha CD3-]) of alpha CD3. The conventional lymphokine-activated killer (LAK) cells were induced by culturing DBA/2 splenocytes with purified human recombinant interleukin 2. Testing their in vitro cytotoxicity against syngeneic mastocytoma P815, CD3-AK (alpha CD3+) cells gave the highest levels of cytotoxicity and were 20-fold higher than LAK cells and 200-fold higher than CD3-AK (alpha CD3-) cells. However, the cytotoxic activity of LAK or CD3-AK (alpha CD3-) cells was augmented by preincubating them with alpha CD3 for 3 h; then, the difference in cytotoxic activity was reduced from 20- to 4-fold and from 200- to 2-fold, respectively. The in vivo antitumor activity of these killer cells paralleled the in vitro activity. In tests using tumor neutralization experiments, 80-100% of the mice that were challenged with 1 x 10(2) P815 cells remained tumor free after receiving 5 x 10(6) CD3-AK (alpha CD3+) cells. When the challenge dose increased to 1 x 10(3) and to 1 x 10(4) cells, giving CD3-AK (alpha CD3+) cells slowed down the rate of tumor growth but only 20% of the mice remained tumor free. The untreated LAK cells or CD3-AK (alpha CD3-) cells did not induce any protection. After preincubation with alpha CD3 for 3 h, the CD3-AK (alpha CD3-) cells provided protection in 30% of the challenged mice. The phenotype of effectors for mediating the in vitro and in vivo antitumor activities was found to be Thy1+, CD4-, and CD8+ cells. Flow microfluorometry analysis showed that the higher levels of cytotoxic activity obtained with CD3-AK (alpha CD3+) cells could not be simply explained by the increase of CD8+ cells, and the cytotoxic activity of individual CD3-AK (alpha CD3+) cells appeared to be much higher than that of the LAK cells. After tumor growth was established for 1-2 days, giving CD3-AK (alpha CD3+) cells slowed down the rate of tumor growth, and 20% of the mice remained tumor free. These results indicate that CD3-AK cells may be used in the immunotherapy of tumor growth.(ABSTRACT TRUNCATED AT 400 WORDS)

          Related collections

          Author and article information

          Comments

          Comment on this article